# Multiple Linear Regression

```/*

July 2006. Annie Che <chea@stat.ucla.edu>. UCLA Statistics.

Source of example data:
An Introduction to Computational Statitics by Robert I Jennrich,
Page 5, example of regression on students' midterm and final scores.

*/
package edu.ucla.stat.SOCR.analyses.example;

import java.util.HashMap;
import edu.ucla.stat.SOCR.analyses.data.Data;
import edu.ucla.stat.SOCR.analyses.data.DataType;
import edu.ucla.stat.SOCR.analyses.result.MultiLinearRegressionResult;

public class MultiLinearRegressionExample {
public static void main(String args[]) {
double[] x1 =
{68,49,60,68,97,82,59,50,73,39,71,95,61,72,87,40,66,58,58,77};
double[] x2 =
{60,94,91,81,80,92,74,89,96,87,86,94,94,94,79,50,92,82,94,78};

double[] y = {75,63,57,88,88,79,82,73,90,62,70,96,76,75,85,40,74,70,75,72};

// you'll need to instantiate a data instance first.
Data data = new Data();

/*********************************************************************
then put the data into the Data Object.
append the predictor data using method "addPredictor".
append the response data using method "addResponse".
**********************************************************************/

try {
MultiLinearRegressionResult result = data.modelMultiLinearRegression();
if (result != null) {

// Getting the model's parameter estiamtes and statistics.
String[] varList = result.getVariableList();
double[] beta = result.getBeta();
double[] seBeta =result.getBetaSE();
double[] tStat = result.getBetaTStat();
String[] pValue = result.getBetaPValue();
int dfError = result.getDF();

double[] predicted = result.getPredicted();
double[] residuals = result.getResiduals();

// residuals after being sorted ascendantly.
double[] sortedResiduals = result.getSortedResiduals();

// sortedResiduals after being standardized.
double[] sortedStandardizedResiduals =
result.getSortedStandardizedResiduals();

// the original index of sortedResiduals, stored as integer array.
int[] sortedResidualsIndex = result.getSortedResidualsIndex();

// the normal quantiles of sortedResiduals.
double[] sortedNormalQuantiles = result.getSortedNormalQuantiles();

// sortedNormalQuantiles after being standardized.
double[] sortedStandardizedNormalQuantiles =
result.getSortedStandardizedNormalQuantiles();

System.out.println("dfError = " + dfError);

for (int i = 0; i < varList.length; i++) {
System.out.println("varList["+i+"] = " + varList[i]);
}
for (int i = 0; i < beta.length; i++) {
System.out.println("beta["+i+"] = " + beta[i]);
}
for (int i = 0; i < residuals.length; i++) {
System.out.println("residuals["+i+"] = " + residuals[i]);
}

}
} catch (Exception e) {
System.out.println(e);
}
}
}
```