

- ☐ Quantum-scale complex-time reps of repeated measurement processes
- Nano-scale
- □ Micro-scale
- Macro-scale
- □ Neuro Data, Brain Networks, MLP & AI
- □ Case-Studies integrated experimental, theoretical, computational & data sciences

Multiscale Neuroscience

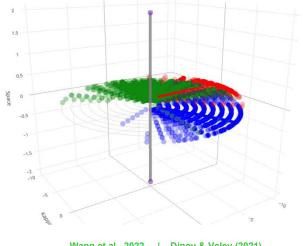
Feature	Quantum Scale	Nano Scale	Micro Scale	Macro Scale
Size Range	10 ⁻¹⁵ - 10 ⁻⁹ m	10 ⁻⁹ - 10 ⁻⁷ m	10 ⁻⁶ - 10 ⁻³ m	10 ⁻³ m and larger
Components	Atoms, ions, subatomic particles	Biomolecules, nanoparticles, nanoscale devices	Neurons, glia, synapses, microcircuits	Brain regions, large- scale networks
Focus	Fundamental quantum phenomena	Molecular interactions, nanoscale tools & structures	Cellular physiology, local circuits	Systems-level function, brain regions & networks
Key Techniques	Quantum modeling, Spectroscopy, Kime-phase tomography (KPT)	Nanofabrication, high-resolution microscopy, nanoscale sensors Cryotomography	Electrophysiology (patch-clamp), optical microscopy, micro-connectomics	fMRI, EEG, MEG, PET, macro- connectomics, lesion studies
Complexity	Lowest (individual particles)	Intermediate (molecules, small devices)	Higher (cells, small circuits)	Highest (brain regions, whole brain)

3

Quantum Scale: Complex-time (Kime) Reps | VVC | Dare

Using QM principles to model quantum variability

Kime-Phase Simulation - Repeated Spacetime Measurements


3 Processes - Green, Red and Blue colors (scatter)

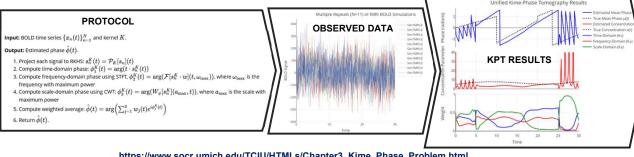
At a given spatial location, x, $\kappa = te^{i\varphi} \in \mathbb{C}$, where the magnitude (t > 0) is time and the event phase $\varphi{\sim}\Phi(t)_{[-\pi,\pi)}$ is an angular displacement, event direction, reflecting a random sampling index

1 Fixed spatial location (vertical axis is 1D space)

Repeated IID Measurements colocalized in 4D ST

3 Different Kime-Phase distributions (color-coded) Radial displacement $t = \underline{\text{time}}$ Angular (**phase**) location $\varphi \sim \Phi_{[-\pi,\pi)}(t)$

Wang et al., 2022 | Dinov & Velev (2021) https://kime.statisticalcomputing.org


Quantum Scale: Quantum → Kime-Phase Tomography

Measurable Observables: Repeated longitudinal measurements (time-series), $f_i(t)$: $\mathbb{R}^+ \to \mathbb{C}$, $\forall i \in \mathbb{N}$

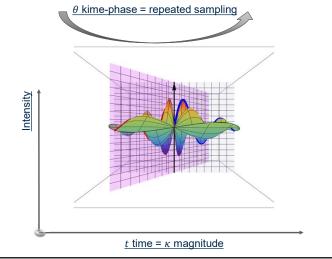
Representation: Complex-time (kime) representation, $\kappa = te^{i\theta} \in \mathbb{C}$, parameterizing the time-series using event ordering (time, $t \in \mathbb{R}^+$) and random draws from a time t -dependent kime-phase distribution $\theta \sim \Phi(t)$

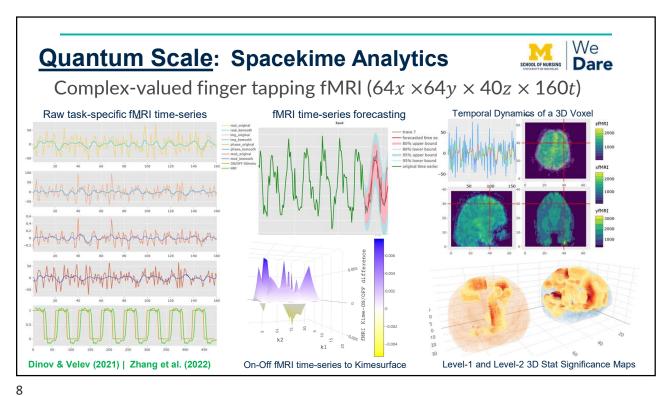
Problem: The kime-phase is unobservable; its recovery requires indirect kime phase tomography (KPT). Similarly to the quantum mechanical approach for recovering the wavefunction phase, KPT takes repeated measurements in different non-commutative bases and distribution action on kime-test functions

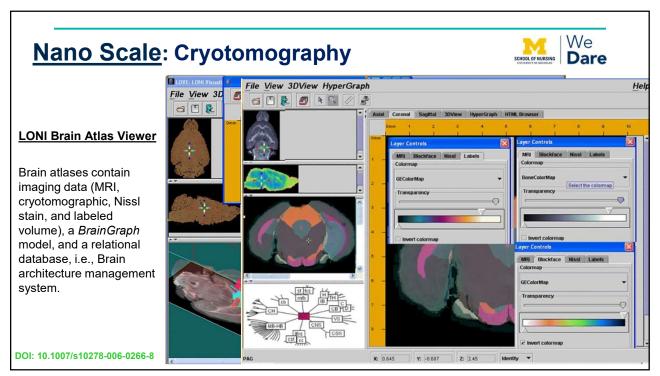
https://www.socr.umich.edu/TCIU/HTMLs/Chapter3_Kime_Phase_Problem.html

6

Quantum Scale: Complex-time (Kime) Reps



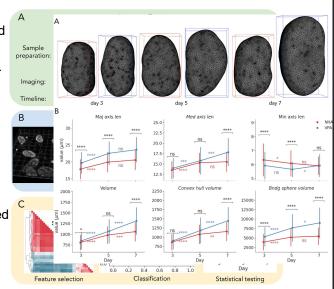

Observable Longitudinal Data Time-Series → Kime-Surfaces (not curves)


In the 5D spacekime manifold, timeseries curves extend to kime-series, i.e., surfaces parameterized by kimemagnitude (t) and the kime-phase (θ).

Kime-phase aggregating operators that can be used to transform standard timeseries curves to spacekime kimesurfaces, which can be modeled, interpreted, and predicted using advanced spacekime analytics.

Zhang et al., 2022 | Dinov & Velev (2021)

Micro Scale: Confocal microscopy


<u>Fig 1</u>: A schematic overview of a confocal microscopy experiment, cancer data collection, and analysis.

- (A) Sample preparation, treatment, and imaging.
- (B) 3D nuclear segmentation, shape modeling, and feature extraction.
- (C) Feature selection, and univariate statistical and machine learning analysis.

Fig 2:

- (A) Reconstructed surfaces of representative NHA (normal) and VPA (valproic acid) treated nuclei
- (B) Time-dependent changes in morphometric measures of nuclear sizes (mean $\pm SE$)

DOI: 10.1091/mbc.E20-08-0502

10

Macro Scale

Common neuroimaging protocols & computational statistical mapping

Invasive neuroimaging

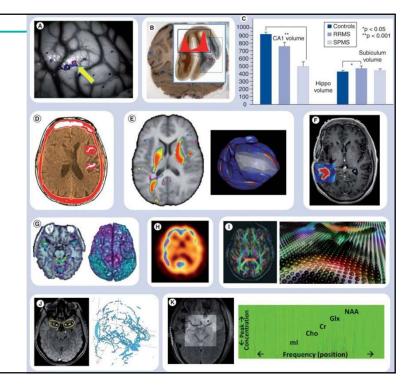
Functional (in vivo)

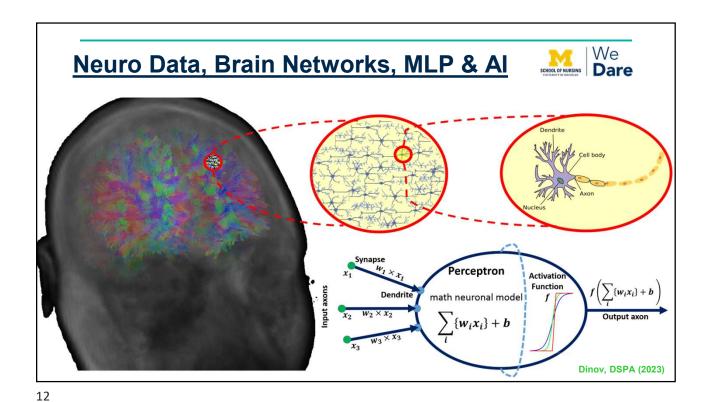
Anatomical (ex vivo)

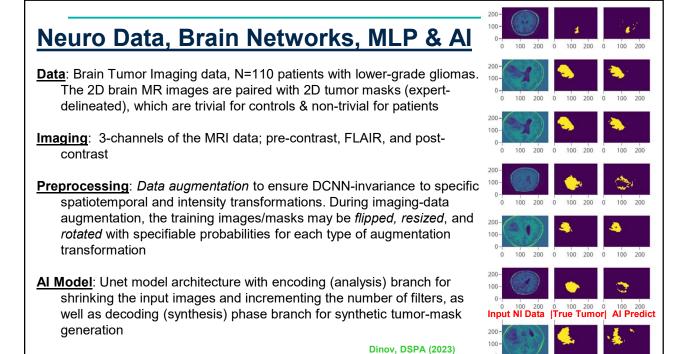
Structural (ex vivo)

Noninvasive neuroimaging

Structural


Functional


Diffusion


Angiography

Spectroscopy

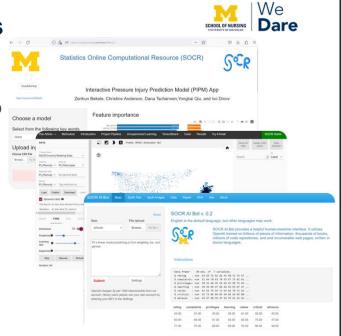
DOI: 10.2217/iim.11.37

Cohort Study: Normal & Pathological Aging | We Dare

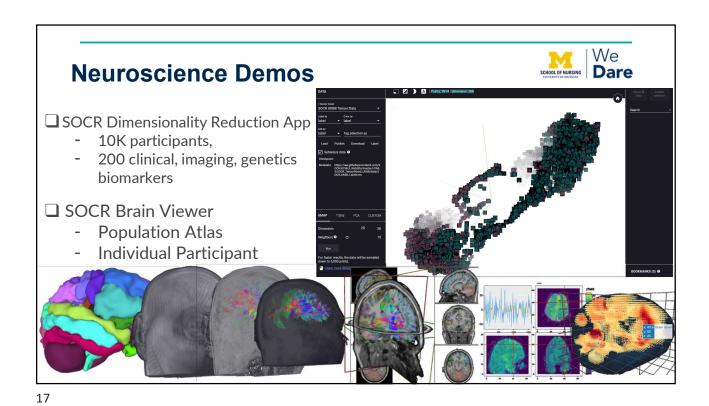
- □ Problem Model age-related cognition in 3 participant cohorts (1) Asymptomatic Controls, (2) Mild Cognitive Impairment, (3) Dementia
- ☐ Evidence (data types) clinical evaluation (tables), genetic information (sequences), and 3D/4D neuroimaging (spatiotemporal)
- ☐ Status-quo of clinical care independent analysis of the 3 different data types followed by inference pooling
- ☐ Challenge introduce new holistic Health-Analytics Protocol for AI modeling, Dx, classification, and Tx plan using the joint distribution of the entire observed data.

Refs: https://www.socr.umich.edu/people/dinov/publications.html Apps: https://socr.umich.edu/HTML5/ **Input Data** Results Alzheimer's disease dementia rs11257238 ECHDC3 rs6014724 CASS4 rs8093731 SUZ12P1 0.0007

End-to-end Pipeline Workflow


15

3D Neuroimaging


Live SOCR AI Webapps

Genetics

- ☐ Interactive Pressure Injury Prediction Model (PIPM) App (RShiny)
- ☐ Visual Exploratory Data Analytics (SOCR Tensorboard Webapp)
- Quantitative Al-driven Analytics (SOCR AI Bot)

Neuroimaging-Genetics Associations

Available Al Resources

SOCR Motto – "It's Online & Freely Accessible, Therefore it Exists!"		
Pubs:	https://socr.umich.edu/people/dinov/publications.html	
GitHub:	https://github.com/SOCR/PressureInjuryPrediction	
PIPM App:	https://rcompute.nursing.umich.edu/PIPM_v2/	
Al Apps:	https://socr.umich.edu/HTML5/	
SOCR AI Bot	: https://rcompute.nursing.umich.edu/SOCR_AI_Bot/	
Demos:	https://DSPA2.predictive.space (Appendix 9 - OpenAl Synth Text Img & Code)	
Tutorials:	https://TCIU.predictive.space & https://SpaceKime.org	
Websites:	https://nursing.umich.edu & https://socr.umich.edu	