Randomized Algorithms for Tensor Decompositions in the Tucker Format

Rachel Minster¹, Zitong Li², Grey Ballard¹

¹Wake Forest University, ²University of California Irvine

1/5/23

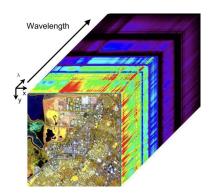
Acknowledgements to NSF CCF 1942892 for funding

Rachel Minster (WFU)

Motivation: Multidimensional data

Multidimensional data appears in many applications:

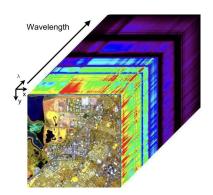
- Numerical simulations for PDE's
- Facial recognition
- Hyperspectral imaging



Motivation: Multidimensional data

Multidimensional data appears in many applications:

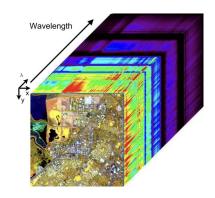
- Numerical simulations for PDE's
- Facial recognition
- Hyperspectral imaging and is often large and difficult to store or compute with



Motivation: Multidimensional data

Multidimensional data appears in many applications:

- Numerical simulations for PDE's
- Facial recognition
- Hyperspectral imaging and is often large and difficult to store or compute with



Goal: efficiently obtain compressed representation of data

Method: use parallel, randomized algorithms for Tucker decompositions

can obtain large compression ratios with high accuracy

Christophe, Duhamel, IEEE Transactions on Image Processing, 2009 depth d

Contributions

- New parallel, randomized algorithms for computing the Tucker decomposition
 - Uses a Kronecker product of random matrices to exploit structure
 - Significantly reduces computational cost compared to deterministic and randomized counterparts

Minster, Li, Ballard, Parallel Randomized Tucker Decomposition Algorithms, arXiv:2211.13028

Rachel Minster (WFU)

Contributions

- New parallel, randomized algorithms for computing the Tucker decomposition
 - Uses a Kronecker product of random matrices to exploit structure
 - Significantly reduces computational cost compared to deterministic and randomized counterparts
- New parallel method of computing a multi tensor-times-matrix (multi-TTM) product, an "all-at-once" approach
 - Reduces communication compared to previous approaches

Minster, Li, Ballard, *Parallel Randomized Tucker Decomposition Algorithms*, arXiv:2211.13028

Rachel Minster (WFU)

Contributions

- New parallel, randomized algorithms for computing the Tucker decomposition
 - Uses a Kronecker product of random matrices to exploit structure
 - Significantly reduces computational cost compared to deterministic and randomized counterparts
- New parallel method of computing a multi tensor-times-matrix (multi-TTM) product, an "all-at-once" approach
 - Reduces communication compared to previous approaches
- Theoretical error bound for the algorithms

Minster, Li, Ballard, *Parallel Randomized Tucker Decomposition Algorithms*, arXiv:2211.13028

Rachel Minster (WFU) 1/5/23 3 / 21

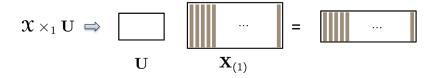
Outline

- Background
 - Key tensor operations
 - O Tucker format
 - Sandomized range finder
- Randomized Tucker algorithms
 - Sequential algorithms
 - Error Analysis
 - Accuracy experiments
- Parallel approach
- Numerical results

Tensor-times-matrix (TTM) and Multi-TTM

Key tensor operations:

- Tensor-times-matrix (TTM): $\mathcal{X} \times_j U$
 - \bullet Tensor multiplied by a matrix in a single mode j
 - Computed as matrix multiplication: matrix times unfolded tensor



Tensor-times-matrix (TTM) and Multi-TTM

Key tensor operations:

- Tensor-times-matrix (TTM): $\mathcal{X} \times_j U$
 - \bullet Tensor multiplied by a matrix in a single mode j
 - Computed as matrix multiplication: matrix times unfolded tensor

$$\mathbf{X} \times_1 \mathbf{U} \implies \boxed{\mathbf{U}} \qquad \cdots = \boxed{\mathbf{X}_{(1)}}$$

- Multi-TTM: $\mathcal{X} \times_1 U_1 \times_2 U_2 \cdots \times_d U_d$ for *d*-mode tensor
 - Can be unfolded in j-th mode as

$$U_j X_{(j)} (U_d \otimes U_{d-1} \otimes \cdots \otimes U_{j+1} \otimes U_{j-1} \otimes \cdots \otimes U_1)^{\top}$$

with ⊗ the Kronecker product

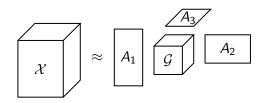
Rachel Minster (WFU) 1/5/23 5 / 21

Tucker Format

Approximates tensor ${\mathcal X}$ as

$$\mathcal{X} \approx \mathcal{G} \times_1 A_1 \times \cdots \times_d A_d$$

with
$$\mathcal{G} \in \mathbb{R}^{r_1 imes \cdots imes r_d}$$
, $A_j \in \mathbb{R}^{n_j imes r_j}$



Popular algorithms: Higher Order SVD $(HOSVD)^1$ and Sequentially Truncated Higher Order SVD $(STHOSVD)^2$

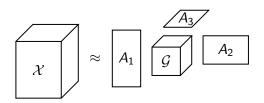
¹De Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000

Tucker Format

Approximates tensor ${\mathcal X}$ as

$$\mathcal{X} \approx \mathcal{G} \times_1 A_1 \times \cdots \times_d A_d$$

with
$$\mathcal{G} \in \mathbb{R}^{r_1 imes \cdots imes r_d}$$
, $A_j \in \mathbb{R}^{n_j imes r_j}$



Popular algorithms: Higher Order SVD $(HOSVD)^1$ and Sequentially Truncated Higher Order SVD $(STHOSVD)^2$

General approach:

- lacktriangle Unfold tensor along mode j
- ② Compute rank- r_j SVD of mode unfolding
- **3** Factor matrix A_j formed from left singular vectors
- Ore (or partial core) formed via TTM's

Rachel Minster (WFU) 1/5/23 6 /

¹De Lathauwer, De Moor, Vandewalle, SIAM Journal on Matrix Analysis and Applications, 2000

²Vannieuwenhoven, Vandebril, Meerbergen, SIAM Journal on Scientific Computing, 2012 | For A Report Report

Tucker Format

General approach:

- $oldsymbol{0}$ Unfold tensor along mode j
- Compute rank-r_j SVD of mode unfolding
- **3** Factor matrix A_j formed from left singular vectors
- Ore (or partial core) formed via TTM's

Our approach:

- Use a randomized algorithm³ to speed up SVD step
 - Use a Kronecker product of random matrices instead of single random matrix to exploit structure
- Implement in parallel
 - Use a new, faster parallel version of a key operation (multi-TTM) to significantly lower runtime

³Ahmadi-Asl, Abukhovich, Asante-Menash, Chichocki, Phan, Tanaka, Oseledets, IEEE Access, 2021 (📳) 👢 💉 🔾 🗠

Randomized Range Finder

For a matrix X, finds a matrix Q that estimates the range of X, or $X \approx QQ^{\top}X$

Inputs: matrix $X \in \mathbb{R}^{m \times n}$ target rank r < rank Xoversampling parameter p

Rachel Minster (WFU)

Main Steps:

- Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$, a random matrix
- ② Form product $Y = X\Omega$
- **3** Compute thin QR Y = QR

Halko, Martinsson, Tropp, SIAM Review, 2011

Randomized Range Finder

For a matrix X, finds a matrix Q that estimates the range of X, or $X \approx QQ^{\top}X$

Inputs: matrix $X \in \mathbb{R}^{m \times n}$ target rank $r \leq \operatorname{rank} X$ oversampling parameter p

Main Steps:

- **①** Draw $\Omega \in \mathbb{R}^{n \times (r+p)}$, a random matrix
- ② Form product $Y = X\Omega$
- **3** Compute thin QR Y = QR

Idea: Use Kronecker product of k random matrices Φ_j as $\Omega = \Phi_1 \otimes \Phi_2 \otimes \cdots \otimes \Phi_k$ so that

$$Y = X\Omega = X(\Phi_1 \otimes \Phi_2 \otimes \cdots \otimes \Phi_k)$$

takes the form of an unfolded multi-TTM

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \dots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

- **Q** Randomized range finder of unfolding $X_{(j)}$
 - **Outpute** $Y_{(j)} = X_{(j)}\Omega$ via Multi-TTM in all modes but j:

$$\mathcal{Y} = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$

1 Thin QR of $Y_{(j)} = A_j R$ with $A_j \in \mathbb{R}^{n \times (r+p)}$

End for

- **③** Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$
- Truncate down to target rank
 - Obeterministic HOSVD on \mathcal{G} , combine factor matrices with A_j 's

マロトマ部トマミトマミト ミークスで

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \dots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

Rachel Minster (WFU)

- **1** Randomized range finder of unfolding $X_{(j)}$
 - **Outpute** $Y_{(j)} = X_{(j)}\Omega$ via Multi-TTM in all modes but j:

$$\mathcal{Y} = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$

1 Thin QR of $Y_{(i)} = A_i R$ with $A_i \in \mathbb{R}^{n \times (r+p)}$

End for

- **3** Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$
- Truncate down to target rank
 - Obeterministic HOSVD on \mathcal{G} , combine factor matrices with A_j 's

←□ ▶ ← □

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \dots, r) , oversampling parameter p

Main steps:

For modes j = 1 : d,

- **1** Randomized range finder of unfolding $X_{(j)}$
 - **Outpute** $Y_{(j)} = X_{(j)}\Omega$ via Multi-TTM in all modes but j:

$$\mathcal{Y} = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$

1 Thin QR of $Y_{(i)} = A_i R$ with $A_i \in \mathbb{R}^{n \times (r+p)}$

End for

- **③** Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$
- Truncate down to target rank
 - **1** Deterministic HOSVD on \mathcal{G} , combine factor matrices with A_j 's

4 L P 4 D P 4 E P 4 E P 9 E *) V(C*

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

• Computing $Y = X_{(1)}\Omega \rightarrow$ one large matrix multiply

Our approach: Kronecker product of random matrices $\Omega = \Phi_2 \otimes \cdots \otimes \Phi_d$ with $\Phi_i \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$

ullet Computing $Y=X_{(1)}\Omega$ o one multi-TTM with skinny matrices

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

- ullet Computing $Y=X_{(1)}\Omega$ o one large matrix multiply
- $n^{d-1}(r+p)$ random entries per mode

Our approach: Kronecker product of random matrices $\Omega=\Phi_2\otimes\cdots\otimes\Phi_d$ with $\Phi_j\in\mathbb{R}^{n\times s}$, $s^{d-1}=r+p$

- Computing $Y = X_{(1)}\Omega \rightarrow$ one multi-TTM with skinny matrices
- (d-1)n(r+p) random entries per mode

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

- ullet Computing $Y=X_{(1)}\Omega$ o one large matrix multiply
- $n^{d-1}(r+p)$ random entries per mode

Our approach: Kronecker product of random matrices $\Omega = \Phi_2 \otimes \cdots \otimes \Phi_d$ with $\Phi_i \in \mathbb{R}^{n \times s}$, $s^{d-1} = r + p$

- Computing $Y = X_{(1)}\Omega \rightarrow$ one multi-TTM with skinny matrices
- (d-1)n(r+p) random entries per mode

Two options for our approach:

- **①** Use an independent product of Φ_j 's per mode
- ② Reuse same Kronecker factors Φ_i in Ω_i for each mode

Standard approach: one random matrix $\Omega \in \mathbb{R}^{n^{d-1} \times (r+p)}$

- ullet Computing $Y=X_{(1)}\Omega$ o one large matrix multiply
- $n^{d-1}(r+p)$ random entries per mode

Our approach: Kronecker product of random matrices $\Omega=\Phi_2\otimes\cdots\otimes\Phi_d$ with $\Phi_i\in\mathbb{R}^{n\times s}$, $s^{d-1}=r+p$

- Computing $Y = X_{(1)}\Omega \rightarrow$ one multi-TTM with skinny matrices
- (d-1)n(r+p) random entries per mode

Two options for our approach:

- **①** Use an independent product of Φ_j 's per mode
- **2** Reuse same Kronecker factors Φ_j in Ω_j for each mode
 - Allows for reuse of computations
 - Makes analysis more complicated

4 D F 4 B F 4 B F B 9 9 9

Error Analysis for R-Kron, RST-Kron, R-Kron-reuse

Parameters:

- d-way tensor $\mathcal{X} \in \mathbb{R}^{n \times n \times \dots \times n}$
- target rank (r, r, ..., r), oversampling parameter p
- $\alpha, \beta > 1$ satisfying $n > r + p \ge \frac{\alpha^2 \beta}{(\alpha 1)^2} (r^2 + r)$
- SRHT random matrices: $\Phi = DH$
 - D diagonal Rademacher
 - H randomly sampled columns from Hadamard matrix

Theorem (M,Li, Ballard)

Except with probability at most $\frac{d}{\beta^2}$,

$$\|\mathcal{X} - \widehat{\mathcal{X}}\|_F^2 \le \left(1 + \frac{\alpha n^{d-1}}{r+p}\right) \sum_{j=1}^d \sum_{i=r+1}^n \sigma_i^2(X_{(j)})$$

Rachel Minster (WFU) 1/5/23 10 /

Error Analysis for R-Kron, RST-Kron, R-Kron-reuse

Theorem (M,Li, Ballard)

Except with probability at most $\frac{d}{\beta^2}$,

$$\|\mathcal{X} - \widehat{\mathcal{X}}\|_F^2 \le \left(1 + \frac{\alpha n^{d-1}}{r+p}\right) \sum_{j=1}^d \sum_{i=r+1}^n \sigma_i^2(X_{(j)})$$

Notes:

- Uses SRHT random matrices that can be represented as a Kronecker product themselves
- Allows for independent product of random matrices per mode, or reuse of same product of random matrices
- Pessimistic compared to accuracy shown in numerical results

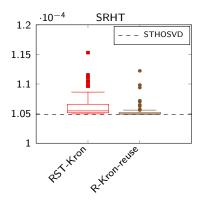
Rachel Minster (WFU)

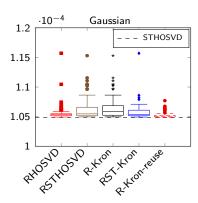
Numerical Results: Accuracy

Parameters:

- ullet 500 imes 500 imes 500 tensor with moderately decaying singular values
- target rank (10, 10, 10), oversampling parameter 5, s = 4

Relative Error over 100 trials



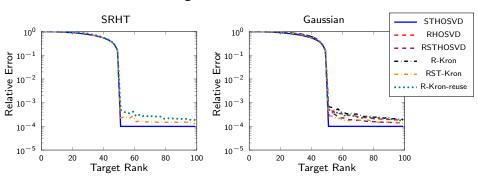


Rachel Minster (WFU) 1/5/23 11 / 21

Numerical Results: Accuracy

- $500 \times 500 \times 500$ random tensor with true rank (50, 50, 50) and 10^{-4} noise
- oversampling parameter 5, $s \le 11$

Relative Error with increasing rank

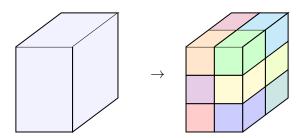


Rachel Minster (WFU) 1/5/23 12 / 21

Idea for parallelization

- Store tensor on processor grid
- Parallelize key operations so communication between processors is small as well as cost of computation
- Key operation for our algorithm: multi-TTM

Example: $3 \times 2 \times 2$ processor grid



Rachel Minster (WFU) 1/5/23 13 / 21

Inputs: $\mathcal{X} \in \mathbb{R}^{n \times \cdots \times n}$, target rank (r, \dots, r) , oversampling parameter p

Main steps:

For modes i = 1 : d,

- **1** Randomized range finder of unfolding $X_{(i)}$
 - Multi-TTM in all modes but j:

$$Y = \mathcal{X} \times_1 \Phi_1^{(j)} \times \cdots \times_{j-1} \Phi_{j-1}^{(j)} \times_{j+1} \Phi_{j+1}^{(j)} \times \cdots \times_d \Phi_d^{(j)}$$

1 Thin QR so that $X_{(j)} \approx A_j A_j^{\top} X_{(j)}$

End for

- **3** Form core via multi-TTM: $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$
- Truncate down to target rank
 - **1** Deterministic HOSVD on \mathcal{G} , combine factor matrices with A_j 's

4 L P 4 D P 4 E P 4 E P 9 E *) V(C*

All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

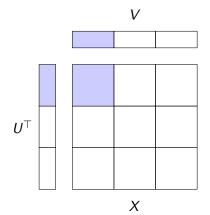
Two approaches based on communication: in sequence and all-at-once

All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once

Example: 2 modes $\mathcal{X} \times_1 U^\top \times_2 V^\top = U^\top X V$



In sequence¹:

- Compute local U[⊤]X, communicate result
- Compute local multiply with V, communicate result

Rachel Minster (WFU)

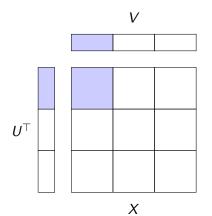
¹Ballard, Klinvex, Kolda, ACM TOMS, 2020

All-at-once multi-TTM

Goal: compute $\mathcal{Y} = \mathcal{X} \times_1 U_1 \times_2 U_2 \times \cdots \times_k U_k$ for $k \leq d$ matrices

Two approaches based on communication: in sequence and all-at-once

Example: 2 modes $\mathcal{X} \times_1 U^\top \times_2 V^\top = U^\top X V$



In sequence¹:

- Compute local U[⊤]X, communicate result
- Compute local multiply with V, communicate result

All-at-once:

- Compute local $U^{\top}XV$
- Communicates final result

¹Ballard, Klinvex, Kolda, ACM TOMS, 2020

Rachel Minster (WFU) 1/5/23 15 / 2

Comparison: multi-TTM

In-sequence:

fewer flops, more communication

All-at-once:

slightly more flops, generally less communication

Comparison: multi-TTM

In-sequence:

- fewer flops, more communication
- better choice when matrices are fat

All-at-once:

- slightly more flops, generally less communication
- better choice when matrices are skinny

Comparison: multi-TTM

In-sequence:

- fewer flops, more communication
- better choice when matrices are fat
- In randomized HOSVD algorithm, use for core multi-TTM $\mathcal{G} = \mathcal{X} \times_1 A_1^\top \times \cdots \times_d A_d^\top$
- factor matrices A_j have more (r + p) columns

All-at-once:

- slightly more flops, generally less communication
- better choice when matrices are skinny
- In randomized HOSVD algorithm, use to compute sketch

$$\mathcal{Y} = \mathcal{X} \times_2 \Phi_2^\top \times \cdots \times_d \Phi_d^\top$$

 random matrices are very skinny (s columns)

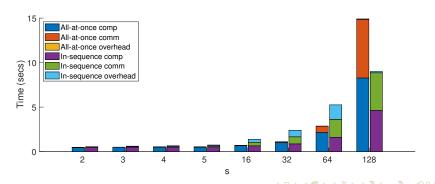
◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Numerical Results: Parallel Runtime

Parameters:

- 4-way tensor, 250 in each mode
- 16 cores on single multicore server
- Gaussian random matrices

Runtime of multi-TTM methods with increasing number of columns s:

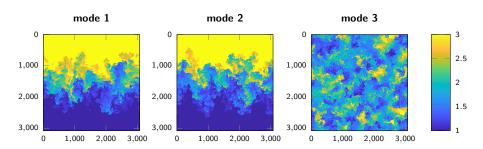


Rachel Minster (WFU) 1/5/23 17 / 21

Numerical Results: Miranda Data

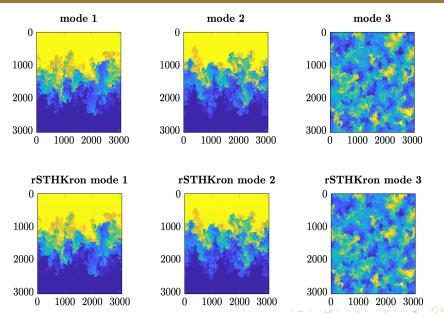
Miranda dataset¹:

- 3-dimensional simulation data of density ratios, 3072 in each mode
- Target rank (502, 504, 361) \sim (10⁻² relative error), $s \le 61$
- On Andes cluster (OLCF)

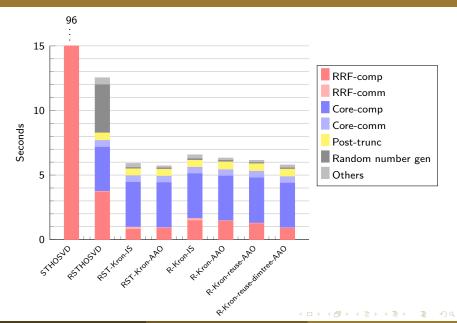


Rachel Minster (WFU) 1/5/23 18 / 21

Numerical Results: Miranda Reconstruction



Numerical Results: Parallel Runtime



Takeaways

Main idea:

Exploiting Kronecker structure and parallelizing key operations of typical randomized HOSVD further reduces the cost of computing Tucker decompositions, and allows for use on distributed systems.

Takeaways

Main idea:

Exploiting Kronecker structure and parallelizing key operations of typical randomized HOSVD further reduces the cost of computing Tucker decompositions, and allows for use on distributed systems.

Summary:

- Use a Kronecker product of random matrices to use multi-TTM instead of large matrix multiply and reduce number of random entries generated
- Analyze error using new results for Kronecker products of SRHT matrices
- New method for computing a multi-TTM in parallel
 - An all-at-once approach that can communicate less than standard approach and works well with Kronecker product of random matrices in our Tucker algorithms

Minster, Li, Ballard, Parallel Randomized Tucker Decomposition Algorithms, arXiv:2211.13028

Rachel Minster (WFU) 1/5/23 21 /