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Complex-Time (Kime)
❑ At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

❑ the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

❑ event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, event direction, or random 
sampling index

❑ There are multiple alternative parametrizations of kime in the complex plane 
❑ Space-kime manifold is ℝ3 × ℂ:  

❑ (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

❑ (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
❑ (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order, 𝑟2 < 𝑟1.

Rationale for Time → Kime Extension
❑ Math – 𝑇𝑖𝑚𝑒 is a special case of kime, 𝜅 = 𝜅 𝑒𝑖𝜑 where 𝜑 = 0 (nil-phase)

• ℝ+ is algebraically a multiplicative (algebraic) group, with multiplicative unity (identity) = 1, 

multiplicative inverses 𝑡−1 =
1

𝑡
, and associativity law 𝑡1 × 𝑡2 × 𝑡3 = 𝑡1 × 𝑡2 × 𝑡3

• The 𝑡𝑖𝑚𝑒 domain (ℝ+) is not a complete algebraic field w.r.t. (+ , ×):
o Additive unity (0), element additive inverse −𝑡 : 𝑡 + −𝑡 = 0; is outside ℝ+ (time-domain)
o 𝑥2 + 1 = 0 has no solutions in time (or in ℝ) ….

Group(×) ⊆ 𝑅𝑖𝑛𝑔 (+,∗)

Compatible operations

associative & distributive

⊆ 𝐹𝑖𝑒𝑙𝑑 (+,∗)

Group(+)

• Classical time (ℝ+) is a positive cone over the field of the real numbers (ℝ) 
• Time forms a subgroup of the multiplicative group of the reals
• Whereas kime (ℂ) is an algebraically closed prime field that naturally extends time
• Time is ordered but kime is not! Yet, the kime magnitude preserves the intrinsic time order
• Kime (ℂ) represents the smallest natural extension of time, as a complete filed that agrees with time
• The 𝑡𝑖𝑚𝑒 group is closed under addition, multiplication, and division (but not subtraction). It has the 

topology of ℝ and the structure of a multiplicative topological group ≡ additive topological semigroup

❑ Physics –
❑ Problem of time … (DOI 10.1007/978-3-319-58848-3)

❑ ℝ and ℂ Hilbert-space quantum theories make different predictions (DOI: 10.1038/s41586-021-04160-4)

❑ AI/Data Science – Random IID sampling, Bayesian reps, tensor modeling of ℂ kimesurfaces, novel analytics

Dinov & Velev (2021)

Ultrahyperbolic Wave Equation –
Cauchy Initial Data

❑ Nonlocal constraints yield the existence, uniqueness & stability of local and global 
solutions to the ultrahyperbolic wave equation under Cauchy initial data …

Craig & Weinstein (2008) |    Wang et al. (2022)     |    Dinov & Velev (2021)
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where 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑑𝑠 ∈ ℝ𝑑𝑠 and 𝜿 = 𝜅1, 𝜅2, … , 𝜅𝑑𝑡 ∈ ℝ𝑑𝑡 are the Cartesian coordinates in the 𝑑𝑠 space and 𝑑𝑡 time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints 𝝃 ≥ 𝜼−1 :

ො𝑢 𝝃, 𝜅1, 𝜼−1
𝜼
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2 ො𝑢𝑜 𝝃, 𝜼−1
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,
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𝑢1

=
ො𝑢𝑜
ො𝑢1

=
ො𝑢𝑜 𝝃, 𝜼−1
ො𝑢1 𝝃, 𝜼−1

=
ො𝑢 𝝃, 𝜼−1

𝜕𝜅1 ො𝑢 𝝃,𝜼−1
.

𝑢 𝒙, 𝜅1, 𝜿−1
𝜿

= ℱ−1 ො𝑢 𝒙, 𝜿 = න

𝐷𝑠×𝐷𝑡−1

ො𝑢 𝝃, 𝜅1, 𝜼−1 × 𝑒2𝜋𝑖 𝒙,𝝃 × 𝑒2𝜋𝑖 𝜿−1,𝜼−1 𝑑𝝃 𝑑𝜼−1 .

A Spacekime Solution to Wave Equation

❑Math Generalizations:
Derived other spacekime 
concepts: law of addition of 
velocities, energy-momentum 
conservation law, stability 
conditions for particles moving in 
spacekime, conditions for 
nonzero rest particle mass, causal 
structure of spacekime, and 
solutions of the ultrahyperbolic 
wave equation under Cauchy 
initial data …

Wang et al., 2022     |    Dinov & Velev (2021)
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Math Foundations of Spacekime
❑ Spacekime: 𝒙, 𝒌 = 𝑥1, 𝑥2, 𝑥3

space

, 𝑐𝜅1 = 𝑥4, 𝑐𝜅2 = 𝑥5

kime

∈ 𝑋

❑ Kevents (complex events): points (or states) in the 

spacekime manifold 𝛸. Each kevent is defined by where (𝒙 =
(𝑥, 𝑦, 𝑧)) it occurs in space, what is its causal longitudinal 

order 𝑟 = 𝑥4 2+ 𝑥5 2 , and in what kime-direction

𝜑 = atan2(𝑥5, 𝑥4) it takes place

❑ Spacekime interval (𝑑𝑠) is defined using the general 

Minkowski  5 × 5 metric tensor

❑ Spacekime Calculus of differentiation and integration  

(defined using Wirtinger derivatives and path integration

❑ Generalization of the equations of motion in spacekime

❑ Lorentz transformation (between 2 spacekime inertial frames)

❑ Solutions to ultrahyperbolic PDEs

Dinov & Velev (2021)

Spacekime Calculus
❑ Kime Wirtinger derivative, 1st order kime-derivative at 𝒌 = (𝑟, 𝜑), 𝑧 = (𝑥 + 𝑖𝑦):

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
and 𝑓′ ҧ𝑧 =

𝜕𝑓 ҧ𝑧

𝜕 ҧ𝑧
=

1

2

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
.

In Conjugate-pair basis: 𝑑𝑓 = 𝜕𝑓 + ҧ𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕

𝜕 ҧ𝑧
𝑑 ҧ𝑧

In Polar kime coordinates:

𝑓′ 𝑘 =
𝜕𝑓 𝑘

𝜕𝑘
=
1

2
cos𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin𝜑

𝜕𝑓

𝜕𝜑
− 𝒊 sin𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos𝜑

𝜕𝑓

𝜕𝜑
=
𝑒−𝒊𝜑

2

𝜕𝑓

𝜕𝑟
−
𝒊

𝑟

𝜕𝑓

𝜕𝜑

𝑓′ ҧ𝑘 =
𝜕𝑓 ҧ𝑘

𝜕 ҧ𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
+ 𝒊 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos 𝜑

𝜕𝑓

𝜕𝜑
=
𝑒𝒊𝜑

2

𝜕𝑓

𝜕𝑟
+
𝒊

𝑟

𝜕𝑓

𝜕𝜑
.

❑ Kime Wirtinger integration:

Path-integral lim
𝑧𝑚+1−𝑧𝑚 →0

σ𝑚=1
𝑛−1 𝑓(𝑧𝑚)(𝑧𝑚+1 − 𝑧𝑚) ≅ 𝑧𝑎ׯ

𝑧𝑏 𝑓 𝑧 𝑑𝑧 .

Definite area integral: for Ω ⊆ ℂ, Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝑑2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑 ҧ𝑧
= 4

𝜕𝑓

𝑑 ҧ𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev (2021)

Newton’s equations of motion in kime

𝒗 = 𝒂𝒕 + 𝒗𝒐

𝒙 = 𝒙𝒐 + 𝒗𝒐𝒕 +
𝟏

𝟐
𝒂𝒕𝟐

𝒗𝟐 = 𝟐𝒂(𝒙 − 𝒙𝒐) + 𝒗𝒐
𝟐

⇒

𝒗 = 𝒂𝟏𝒌𝟏 + 𝒗𝒐𝟏 = 𝒂𝟐𝒌𝟐 + 𝒗𝒐𝟐 ,

𝒙 = 𝒙𝒐𝟏 + 𝒗𝒐𝟏𝒌𝟏 +
𝟏

𝟐
𝒂𝟏𝒌𝟏

𝟐 = 𝒙𝒐𝟐 + 𝒗𝒐𝟐𝒌𝟐 +
𝟏

𝟐
𝒂𝟐𝒌𝟐

𝟐,

𝒗𝟐
𝟒– 𝒗𝟐𝒗𝟐

𝟐 =–𝒂𝟏 𝒙– 𝒙𝒐𝟏 + 𝒗𝒐𝟐
𝟒 – 𝒗𝒐

𝟐𝒗𝒐𝟐
𝟐 ,

𝒗𝟏
𝟒– 𝒗𝟐𝒗𝟏

𝟐 =–𝒂𝟐 𝒙–𝒙𝒐𝟐 + 𝒗𝒐𝟏
𝟒 – 𝒗𝒐

𝟐𝒗𝒐𝟏
𝟐

❑Derived from the Kime Wirtinger velocity and acceleration

❑Kime-velocity 𝒌 = (𝑡, 𝜑) is defined by the Wirtinger derivative of the position with respect to 
kime:

𝜈 𝒌 =
𝜕𝒙

𝜕𝒌
=
1

2
cos𝜑

𝜕𝒙

𝜕𝑡
−
1

𝑡
sin 𝜑

𝜕𝒙

𝜕𝜑
− 𝑖 sin 𝜑

𝜕𝒙

𝜕𝑡
+
1

𝑡
cos𝜑

𝜕𝒙

𝜕𝜑

❑The directional kime derivatives 𝑣1 and 𝑣2, (e = unit vector of spatial directional change):

𝒗1 =
𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

𝑑𝑘1
𝒆 =

𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

cos 𝜑𝑑𝑡−𝑡 sin 𝜑𝑑𝜑
𝒆, 𝒗2 =

𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

𝑑𝑘2
𝒆 =

𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

sin 𝜑𝑑𝑡+𝑡 cos 𝜑𝑑𝜑
𝒆

Dinov & Velev (2021)

Spacekime Generalizations

❑ Spacekime generalization of Lorentz transform between two reference frames, 
𝐾 & 𝐾′:

(the interval 𝑑𝑠 is Lorentz transform invariant)

𝑥′
𝑦′

𝑧′
𝑘1
′

𝑘2
′

∈𝐾′

=

𝜁 0 0

0 1 0

0 0 1

−
𝑐2

𝑣1
𝛽2𝜁

0

0

−
𝑐2

𝑣2
𝛽2𝜁

0

0

−
1

𝑣1
𝛽2𝜁 0 0 1 + 𝜁 − 1

𝑐2

𝑣1
2
𝛽2 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2

−
1

𝑣2
𝛽2𝜁 0 0 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2 1 + 𝜁 − 1

𝑐2

𝑣2
2
𝛽2

𝑥
𝑦
𝑧
𝑘1
𝑘2
∈𝐾

Dinov & Velev (2021)

where   0 ≤ 𝛽 =
1

𝑐

𝑣1

2
+

𝑐

𝑣2

2
≤ 1 &     𝜁 =

1

1−𝛽2
≥ 1 .

Data→Kime-Transforms→PDEs→AI

Wang et al., 2022     |    Dinov & Velev (2021)

Hidden Variable Theory & Random Sampling

❑ Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008)

https://wiki.socr.umich.edu/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_Kime_Phases_Circular.html

Dinov & Velev (2021)
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(Many) Spacekime Open Math Problems
❑ Ergodicity

Let’s look at particle velocities in the 4D Minkowski spacetime (𝑋), a measure space where 
gas particles move spatially and evolve longitudinally in time. Let 𝜇 = 𝜇𝒙 be a measure on 𝑋,  
𝑓 𝒙, 𝑡 ∈ 𝐿1(𝑋, 𝜇) be an integrable function (e.g., velocity of a particle), and 𝑇: 𝑋 → 𝑋 be a 

measure-preserving transformation at position 𝒙 ∈ ℝ3 and time 𝑡 ∈ ℝ+. 

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of 𝑓 (e.g., 

velocity) over all particles in the gas system at a fixed time, ҧ𝑓 = 𝐸𝑡 𝑓 = ℝ3 𝑓 𝒙, 𝑡 𝑑𝜇𝒙, will 

be equal to the average 𝑓 of just one particle (𝒙) over the entire time span,

ሚ𝑓 = lim
𝑛⟶∞

1

𝑛
σ𝑚=0
𝑛 𝑓(𝑇𝑚𝒙) ,  i.e., (show)  ҧ𝑓 ≡ ሚ𝑓. 

The spatial probability measure is denoted by 𝜇𝒙 and the transformation 𝑇𝑚𝒙 represents 
the dynamics (time evolution) of the particle starting with an initial spatial location 𝑇𝑜𝒙 = 𝒙. 

Investigate the ergodic properties of various transformations in the 5D spacekime: 

ҧ𝑓 ≡ 𝐸𝜅 𝑓 =
1

𝜇𝒙(𝑋)
න𝑓 𝒙,ต𝑡,𝜙

𝜅

𝑑𝜇𝒙

space averaging

ฏ=
?

lim
𝑡⟶∞

1

𝑡


𝑚=0

𝑡

න
−𝜋

+𝜋

𝑓 𝑇𝑚𝒙, 𝑡, 𝜙 𝑑Φ ≡ ሚ𝑓

kime averaging

Dinov & Velev (2021)

Mathematical-Physics ⟹ Data Science & AI
Physics Data/Neuro Sciences

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with a priori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}
A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …

Mathematical-Physics ⟹ Data Science & AI
Physics Data Science

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐
−
𝟏

𝝂𝟐
𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕)

= 𝟎

Complex Solution:

𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙−𝒘𝒕)

where 
𝒘

𝑘
= 𝜈,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

• A linear (GLM) model represents a solution of a prediction inference 

problem, 𝒀 = 𝑿𝛽, where the inference function quantifies the effects of all 
independent features (𝑿) on the dependent outcome (𝒀), data: 𝑶 = {𝑿, 𝒀}:

𝝍 𝑶 = 𝝍 𝑿, 𝒀 ⇒ መ𝛽 = መ𝛽𝑶𝑳𝑺 = 𝑿 𝑿 −𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀.

• A non-parametric, non-linear, alternative inference is SVM classification. If 

𝝍𝒙 ∈ 𝑯, is the lifting function 𝝍:𝑹𝜼 → 𝑹𝒅 (𝝍:𝒙 ∈ 𝑹𝜼 → 𝑥 = 𝝍𝒙 ∈ 𝑯), where 

𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 :𝑶 × 𝑶 → 𝑹 transformes non-linear to 

linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊 ∈

𝑯. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at 𝝍𝑶𝒊, where 𝜷∗ is a solution to the SVM regularized 

optimization: 

The linear coefficients, 𝒑𝒊
∗, are the dual weights that are multiplied by the label corresponding to each 

training instance, {𝒚𝒊} . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 
quantifies predictions in a probabilistic sense.

GLM/SVM: https://DSPA.predictive.space |      Dinov, Springer (2018)

𝜓𝑂| 𝛽
∗
𝐻 =

𝑖=1

𝑛

𝑝𝑖
∗ 𝜓𝑂|𝜓𝑂𝑖 𝐻

Spacekime Analytics: fMRI Example

❑ 3D Isosurface Reconstruction of (2D space × 1D time) fMRI signal

Spacetime Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

Spacekime Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)

Spacekime Analytics: 

Kime-series = Surfaces (not curves)

In
te

n
s
it
y

𝜑 kime-phase

𝑡 time = 

𝜅 kime-magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑)

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics

Spacetime Time-series ⟹ Spacekime Kimesurfaces ⟹ TLM

Zhang et al., 2022     |    Dinov & Velev (2021)
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Mapping Longitudinal Data (Time-series) to Kime-Surfaces

Zhang et al., 2022     |    Dinov & Velev (2021)

Mapping Longitudinal Data (Time-series) to Kime-Surfaces

Zhang et al., 2022     |    Dinov & Velev (2021)

The forward and inverse (continuous) Laplace transforms are defined below.

• For a given function (of time) 𝑓 𝑡 : ℝ+ → ℂ, the Laplace transform is the function 
of a complex frequency argument, 𝐹 𝑧 = ℒ 𝑓 𝑧 : ℂ → ℂ:

ℒ 𝑓 𝑧 = 𝐹 𝑧 = න
0

∞

𝑓 𝑡 𝑒−𝑧𝑡𝑑𝑡 .

• For a given function of a complex frequency argument, 𝐹 𝑧 , the Inverse Laplace 
transform (ILT) is the function of a positive real (time-like) argument 𝑓 𝑡 =
ℒ−1 𝐹 𝑡 : ℝ+ → ℂ, which is defined in terms of a complex path integral (a.k.a. 
Bromwich integral or Fourier–Mellin integral):

𝑓 𝑡 = ℒ−1 𝐹 𝑡 =
1

2𝜋𝑖
lim
𝑇→∞

න
𝛾−𝑖𝑇

𝛾+𝑖𝑇

𝑒𝑧𝑡𝐹 𝑧 𝑑𝑧 ,

where the parameter 𝛾 ∈ ℝ is chosen so that the entire complex contour path of the 
integral is inside of the region of convergence of 𝐹 𝑧 . 

In probability and statistics, the Laplace transform plays the role of expected value. If 𝑋
is a random variable, then its Laplace transform, i.e., the LT of its probability density 
function 𝑓𝑋, is given by the expectation of an exponential: ℒ 𝑋 = ℒ 𝑓 𝑧 = 𝔼 𝑒−𝑧𝑋 .

Mapping Longitudinal Data (Time-series) to Kime-Surfaces

Zhang et al., 2022     |    Dinov & Velev (2021)

Apply the ILT (ℒ−1 ) to reconstruct a time-series, መ𝑓 𝑡 = ℒ−1 𝐹 𝑡 :

𝐹 𝑧 = ℒ 𝑓 =
1

𝑧 + 1
𝐹1 𝑧 =ℒ 𝑓1 𝑡 =𝑒−𝑡

+
1

𝑧2 + 1
𝐹2 𝑧 =ℒ 𝑓2 𝑡 =sin 𝑡

×
𝑧

𝑧2 + 1
𝐹3 𝑧 =ℒ 𝑓3 𝑡 =cos 𝑡

+
ถ

1

𝑧2

𝐹4 𝑧 =ℒ 𝑓4 𝑡 =𝑡

,

𝑓 𝑡 = ℒ−1 𝐹 = ℒ−1 𝐹1 + 𝐹2 × 𝐹3 + 𝐹4) =

ℒ−1 𝐹1 + ℒ−1 𝐹2 ∗ ℒ−1 𝐹3
convolution

𝑡 + ℒ−1 𝐹4 =

ℒ−1 ℒ 𝑓1 𝑡 + ℒ−1 ℒ 𝑓2 ∗ ℒ−1 ℒ 𝑓3 𝑡 + ℒ−1 ℒ 𝑓4 𝑡 ,

𝑓 𝑡 = ℒ−1 𝐹 𝑡 = 𝑓1 𝑡 + 𝑓2 ∗ 𝑓3 𝑡 + 𝑓4 𝑡 =

𝑒−𝑡 +න
0

𝑡

sin 𝜏 × cos 𝑡 − 𝜏 𝑑𝜏 + 𝑡 = 𝑡 + 𝑒−𝑡 +
𝑡sin 𝑡

2
.

2D Fourier Transform –
The Importance of Magnitudes & Phases

2D image 1 (Earth)
Magnitude 

FT(Earth)

Phase

FT(Earth)
2D image 2 (Saturn)

Magnitude

FT(Saturn)

Phase

FT(Saturn)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Earth Saturn

IFT using Earth-magnitude 

& Saturn-phase

IFT using Earth-magnitude 

&  nil-phase

IFT using Saturn-magnitude

& Earth-phase

IFT using Saturn-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Earth Saturn

Tensor-based Linear Modeling of fMRI
3-Step Analysis: registering the fMRI data into a brain atlas space, 56 ROIs, tensor 

linear modeling, post-hoc FDR processing & selection of large clusters of significant 

voxels are identified within the important ROIs: 𝑌 = 𝑋, 𝐵
tensor product

+ 𝐸.

The dimensions of the time-tensor 𝑌 are ฐ160

time

× 𝑎 × 𝑏 × 𝑐

ROI b−box

, where the tensor elements represent 

the response variable 𝑌[𝑡, 𝑥, 𝑦, 𝑧], i.e., fMRI intensity. For fMRI magnitude (real-valued signal), 

the design kime-tensor 𝑋 dimensions are:       10 ∗ 8
Kime(Time∗𝑒𝑖×𝑅𝑒𝑝𝑒𝑎𝑡)

× 𝑆𝑡𝑎𝑡𝑒
Stim vs. Rest (2)

× ณ4
effects

× ณ1
ℝ

.

Step 1: ROI analysis

Step 3: 2D voxel analysis projections
(finger-tapping task modeling)

Voxel-based TLM/Analysis

Corrected (step 3, left) vs. Raw (step 2, right)

Step 2: Voxel analysis

Bayesian Inference Representation
❑ Suppose we have a single spacetime observation 𝑋 = 𝑥𝑖𝑜 ∼ 𝑝 𝑥 𝛾) and 𝛾 ∼

𝑝 𝛾 𝜑 = phase) is a process parameter (or vector) that we are trying to estimate. 

❑ Spacekime analytics aims to make appropriate inference about the process 𝑋.

❑ The sampling distribution, 𝑝 𝑥 𝛾), is the distribution of the observed data 𝑋
conditional on the parameter 𝛾 and the prior distribution, 𝑝 𝛾 𝜑), of the parameter 

𝛾 before the data 𝑋 is observed, 𝜑 = phase aggregator.

❑ Assume that the hyperparameter (vector) 𝜑, which represents the kime-phase 

estimates for the process, can be estimated by ො𝜑 = 𝜑′.

❑ Such estimates may be obtained from an oracle (model distribution), approximated 

using similar datasets, acquired as phases from samples of analogous processes, 

derived via some phase-aggregation strategy, or computed via Laplace transform. 

❑ Let the posterior distribution of the parameter 𝛾 given the observed data 𝑋 = 𝑥𝑖𝑜
be 𝑝 𝛾 𝑋, 𝜑′ and the process parameter distribution of the kime-phase 

hyperparameter vector 𝜑 be 𝛾 ∼ 𝑝 𝛾 𝜑).
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Bayesian Inference Simulation
❑ Simulation example using 2 random samples drawn from mixture distributions 

each of 𝑛𝐴 = 𝑛𝐵 = 10K observations: 

❑ {𝑋𝐴,𝑖}𝑖=1
𝑛𝐴 , where 𝑋𝐴,𝑖 = 0.3𝑈𝑖 + 0.7𝑉𝑖, 𝑈𝑖 ∼ 𝑁(0,1) and 𝑉𝑖 ∼ 𝑁(5,3), and 

❑ {𝑋𝐵,𝑖}𝑖=1
𝑛𝐵 , where 𝑋𝐵,𝑖 = 0.4𝑃𝑖 + 0.6𝑄𝑖, 𝑃𝑖 ∼ 𝑁(20,20) and 𝑄𝑖 ∼ 𝑁(100,30).

❑ The intensities of cohorts 𝐴 and 𝐵 are independent and follow different mixture 

distributions. We’ll split the first cohort (𝐴) into training (𝐶) and testing (𝐷) 

subgroups, and then:

❑ Transform all four cohorts into Fourier k-space,

❑ Iteratively randomly sample single observations from the (training) cohort 𝐶,

❑ Reconstruct the data into spacetime using a single kime-magnitude value and 

alternative kime-phase estimates derived from cohorts 𝐵, 𝐶, and 𝐷, and

❑ Compute the classical spacetime-derived population characteristics of cohort 

𝐴 and compare them to their spacekime counterparts obtained using a single 

𝐶 kime-magnitude paired with 𝐵, 𝐶, or 𝐷 kime-phases.

Bayesian Inference Simulation

Spacetime Spacekime Reconstructions (single kime-magnitude)

Summaries
(𝐀) 

Original

(𝐵) 

Phase=Diff. Process

(𝐶) 

Phase=True

(𝐷) 

Phase=Independent
Min -2.38798 -3.798440  -2.98116 -2.69808

1st Quartile -0.89359 -0.636799  -0.76765 -0.76453
Median 0.03311 0.009279  -0.05982 -0.08329

Mean 0.00000 0.000000  0.00000 0.00000
3rd Quartile  0.75772 0.645119  0.72795 0.69889

Max 3.61346 3.986702 3.64800 3.22987
Skewness 0.348269 0.001021943 0.2372526 0.31398

Kurtosis -0.68176 0.2149918 -0.4452207 -0.3270084

Summary statistics for the original process (cohort 𝐴) and the corresponding 

values of their counterparts computed using the spacekime reconstructed 

signals based on kime-phases of cohorts 𝐵, 𝐶, and 𝐷. The estimates for the 

latter three cohorts correspond to reconstructions using a single spacetime 

observation (i.e., single kime-magnitude) and alternative kime-phase priors (in 

this case, kime-phases derived from cohorts 𝐵, 𝐶, and 𝐷).

Bayesian Inference Simulation
The correlation between the original data (𝐴) and its reconstruction using a single 

kime magnitude and the correct kime-phases (𝐶) is 𝜌 𝐴, 𝐶 = 0.89. 

This strong correlation suggests that a substantial part of the 𝐴 process energy 

can be recovered using only a single observation. In this case, to reconstruct the 

signal back into spacetime and compute the corresponding correlation, we used a 

single kime-magnitude (sample-size=1) and process 𝐶 kime-phases.

Bayesian Inference Simulation
Let’s demonstrate the Bayesian inference corresponding to this spacekime data 

analytic problem using a simulated bimodal experiment: 

𝑋𝐴 = 0.3𝑈 + 0.7V, where 𝑈 ∼ 𝑁(0,1) and 𝑉 ∼ 𝑁(5,3)

Specifically, we will illustrate the Bayesian inference using repeated single 

spacetime observations from cohort 𝐴, 𝑋 = 𝑥𝑖𝑜 , and varying kime-phase priors 

(𝜃 = phase aggregator) obtained from cohorts 𝐵, 𝐶, or 𝐷, using different posterior 

predictive distributions.

Relations between the empirical data distribution (dark blue) and samples from 

the posterior predictive distribution, representing Bayesian simulated spacekime 

reconstructions (light-blue). The derived Bayesian estimates do not perfectly 

match the empirical distribution of the simulated data, yet there is clearly 

information encoding that is captured by the spacekime data reconstructions. 

This signal compression can be exploited by subsequent model-based or model-

free data analytic strategies for retrospective prediction, prospective forecasting, 

ML classification, AI derived clustering, and other spacekime inference methods.

 
 

Distributions Bivariate test statistic (mean & standard deviation) 

  
Test statistic (maximum) Test statistic (inter-quartile range, IQR) 

Relations between the empirical data distribution (dark blue) and samples 
from the posterior predictive distribution, Bayesian simulated 

spacekime reconstructions (light-blue). 

 

Bayesian Inference Simulation 

Bayesian   

simulated 

spacekime
reconstructions

Samples from      

the posterior 

predictive
distribution 

Spacekime Analytics: Resources & Demos

❑ Tutorials
❑ https://TCIU.predictive.space 
❑ https://SpaceKime.org

❑ R Package
❑ https://cran.rstudio.com/web/packages/TCIU

❑ GitHub
❑ https://github.com/SOCR/TCIU

❑ Pubs
❑ https://socr.umich.edu/people/dinov/publications.html
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