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Complex-Time (Kime)

At a given spatial location, x, complex time (kime) is defined by k = re'? € C, where:
the magnitude represents the longitudinal events order (r > 0) and characterizes
the longitudinal displacement in time, and

O event phase (—m < ¢ < m) is an angular displacement, event direction, or random
sampling index

There are multiple alternative parametrizations of kime in the complex plane

Space-kime manifold is X C:

(x,ky) and (x, k4) have the same spacetime representation, but different
spacekime coordinates,

(x,k;) and (, k) share the same kime, but represent different spatial locations,
(x, k3) and (x, k3) have the same spatial-locations and kime-directions, but
appear sequentially in order, , < 7.

Ultrahyperbolic Wave Equation —
Cauchy Initial Data

O Nonlocal constraints yield the existence, uniqueness & stability of local and global
solutions to the ultrahyperbolic wave equation under Cauchy initial data ...
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O Complex-Time (kime) & Rationale
O Solutions of untrahyperbolic wave equations
O Open Spacekime Problems

O Data/Neuro Science Applications
0 Random Sampling vs. Hidden Variables Paradigm
U Neuroimaging (fMRI): time-series =» kime-surfaces
O Bayesian Formulation of Spacekime Inference
4 Live Demo Links

Rationale for Time = Kime Extension

0 Math - Time is a special case of kime, k = |k|e'® where @ = 0 (nil-phase)
R* is algebraically a multiplicative (algebraic) group, with multiplicative unity (identity) = 1,
multiplicative inverses ¢~ = %, and associativity law t; X (¢ X t3) = (£ X £2) X t5
The time domain (R*) is not a complete algebraic field w.rt. (+, X)
o Additive unity (0), element additive inverse (—t): t + (—t) = 0; is outside R* (time-domain)

+1 = 0 has no solutions in time (o in
Compatible

Group(x) & Ring(

Classical time (R*) is a positive cone over the field of the real numbers (R)
Time forms a subgroup of the multiplicative group of the reals
Whereas kime (C) is an algebraically closed prime field that naturally extends time
Time is ordered but kime is not! Yet, the kime magnitude preserves the intrinsic time order
Kime (C) represents the smallest natural extension of time, as a complete filed that agrees with time
The time group is closed under addition, multiplication, and division (but not subtraction). It has the
topology of R and the structure of a multiplicative topological group = additive topological semigroup
0 Physics —
Q  Problem of time )
Q Rant ilbert-space quantum theories make different predictions (| )

O Al/Data Science — Random IID sampling, Bayesian reps, tensor modeling of C kimesurfaces, novel analytics

A Spacekime Solution to Wave Equation

QO Math Generalizatio
Derived other spacekime
concepts: law of addition of
velocities, energy-momentum
conservation law, stability
conditions for particles moving in
spacekime, conditions for
nonzero rest particle mass, causal
structure of spacekime, and
solutions of the ultrahyperbolic
wave equation under Cauchy
initial data ...



Math Foundations of Spacekime

Spacekime: (x, k) = <x1,x2,x3,cxl = xs) (D.¢
space kime

Kevents (complex events): points (or states) in the

spacekime manifold X. Each kevent is defined by where (x =

(x,y,2)) it occurs in space, what is its causal longitudinal

order (r = JG3 +(x5)2), and in what kime-direction

(¢ = atan2(x>,x*)) it takes place

Spacekime interval (ds) is defined using the general
Minkowski 5 x 5 metric tensor

Spacekime Calculus of differentiation and integration
(defined using Wirtinger derivatives and path integration
Generalization of the equations of motion in spacekime
Lorentz transformation (between 2 spacekime inertial frames)
Solutions to ul perbolic PDEs

Newton’s equations of motion in kime

v =aiky + v, = azk; +v,2,

1
v=at+uv, x:x,,l+vu1k1+ia1k%:x.,z+v.,zkz+§a2k§,

1
¢ = t+ > at? oo ;
A Vot & 2_a vi-v208 =-a; (x-x,1) + [vi,-vEvE,,
v2 = 2a(x — x,) + v
vi-v20] =-a; (x-x02) + V31~ V5V,
UDerived from the Kime Wirtinger velocity and acceleration

OkKime-velocity (k = (t, ¢)) is defined by the Wirtinger derivative of the position with respect to
kime:

& _0x _ox 1 ax
V() = 55 = 5| cospgr ~gsino 7

@dt+t cos o

Data—> Kime-Transforms—=>PDEs—>Al

Time > Kime Transformation Wave equation Solutions (kime) dynamics  Prospective Data Science Applications

fMRI time-series  fMRI kime-surfaces  Cross sections Volume rendering 3D p-value map Stat significance
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Spacekime Calculus

Q Kime Wirtinger derivative, 1% order kime-derivative at k = (7, @), z

_ Q. and f'(2) = dg(iz’i

In Conjugate-pair basis: df = of +0f = %dz aF %dz’
In Polar kime coordinates:

af (k)

70 =2

0O Kime Wirtinger integration:
Pathintegral 1 ST (f (zm) (omes = 2m)) = 67 f(2)dz.

Zm+1~=Zm| =0

Definite area integral: for Q € C, [, f(z)dzdz .
Indefinite integral: [ f(z)dzdz, df =

The Laplacian in terms of conjugate pair coordinates is Af = d?f

Spacekime Generalizations

O Spacekime generalization of Lorentz transform between two reference frames,
K&K'"
(the interval ds is Lorentz transform invariant)

1L -~ c
-=p% 0 £
v2

23 v,

where 0<p =

Hidden Variable Theory & Random Sampling

Q Kime phase distributions are mostly symmetric, random observations = phase sampling

Kime-Phases Circular distribution

N=2 Banduidih =25 Unt = racians



(Many) Spacekime Open Math Problem

0 Ergodicity
Let’s look at particle velocities in the 4D Minkowski spacetime (X), a measure space where
gas particles move spatially and evolve longitudinally in time. Let 4 = u, be a measure on X,
f(x,t) € L(X, u) be an integrable function (e.g., velocity of a particle), and T: X — X be a
measure-preserving transformation at position x € R? and time t € R*.

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of f (e.g.,

velocity) over all particles in the gas system at a fixed time, f = E.(f) = _|)1 f(x, t)dpy, will
be equal to the average f of just one particle (x) over the entire time span,

Jim (3200 f(T™)), Le, (show) f = f.

The spatial probability measure is denoted by u, and the transformation T™x represents
the dynamics (time evolution) of the particle starting with an initial spatial location T°.

Investigate the ergodic properties of various transformations in the 5D spaceki
1 J 1t g
,E(‘)—i,”".\f,[,)dl = ]im(z
FEEWD =5 /( 7!5) 0% S (T 2

R d))dtl)>) =

me averaging

Mathematical-Physics = Data Science & Al
Physics Data Science

Inference function - describing a solution to a specific data analytic system (a

) problem). For example,

Wavefunction e Alinear (GLM) model represents a solution of a prediction inference

problem, ¥ = X, where the inference function quantifies the effects of all

independent features (X) on the dependent outcome (¥), data: 0 = {X,Y}:

Wave equ problem: y -1
PO) = P(X,Y) = f=pO8 =(X|X)"LXIy) = (X"X) " 'XTY.

(9% 19
\dx%2 v at,

A non-parametric, non-linear, alternative inference is SVM classification. If
P, € H, is the lifting function ¥: R" » R? (: x € R" > % = ¥, € H), where
1 < d, the kernel Y, (y) = (x|y): 0 x 0 — R transformes non-linear to
linear separation, the observed data 0; = {x;, y;} € R" are lifted to ¥, €
H. Then, the SVM prediction operator is the weighted sum of the kernel
functions at 4, where B* is a solution to the SVM regularized
optimization:

Complex Solution:
P(x, t) = Aeitkx—w
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Mathematical-Physics = Data Science & Al

Physics
Aparticle is a small localized object that
permits observations and characterization of
its physical or chemical properties
An observable a dynamic variable about
particles that can be measured
Particle state is an observable particle
characteristic (e.g., position, momentum)
Particle system is a collection of
independent particles and observable
characteristics, in a closed system
Wave-function
Reference-Frame transforms (e.g., Lorentz)
State of a system is an observed
measurement of all particles ~ wavefunction
Aparticle system is computable if (1) the
entire system is logical, consistent, complete
and (2) the unknown internal states of the
system don't influence the computation
(wavefunction, intervals, probabilities, etc.)

Data/Neuro Sciences
An object is something that exists by itself, actually or
potentially, concretely or abstractly, physically or
incorporeal (e.g., person, subject, etc.)
Afeature is a dynamic variable or an attribute about an
object that can be measured
Datum is an observed quantitative or qualitative value,
an instantiation, of a feature
Problem, aka Data System, is a collection of
independent objects and features, without necessarily
being associated with a priori hypotheses
Inference-function
Data transformations (e.g., wrangling, log-transform)
Dataset (data) is an observed instance of a set of
datum elements about the problem system, 0 = {X,Y}

Computable data object is a very special
representation of a dataset which allows direct
application of computational processing, modeling,
analytics, or inference based on the observed dataset

Spacekime Analytics: fMRI Example

0 3D Isosurface Reconstruction of (2D space x 1D time) fMRI signal

=R

Spacetime Reconstruction using trivial Spacekime Reconstruction using
phase-angle; kime=time=(magnitude, 0) correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
f=h(xu%, t)
space time

where [¥] = v, Wol 8 = ). piliolior),
1

The linear coefficient are the dual weights that are multiplied by the label corresponding to each
represents a training instance, {y}

traveling wave Inference always depends on the (input) data; however, it does not have 1-1
and onto bijective correspondence with the data, since the inference function

quantifies predictions in a probabilistic sense.

CLMISVM: M M

Spacekime Analytics: Spacetime Time-series = Spacekime Kimesurfaces = TLM

Kime-series = Surfaces (not curves)

In the 5D spacekime manifold, ol
time-series curves extend to |

kime-series, i.e., surfaces
parameterized by kime-
magnitude (t) and the kime-
phase (¢)

t tim i °
kime-magnitude

Kime-phase aggregating
operators that can be used to
transform standard time-series
curves to spacekime kime- y
surfaces, which can be modeled, @ kime-phase _# o

interpreted, and predicted using 0 15

advanced spacekime analytics

'e
. t Intensit)
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Mapping Longitudinal Data (Time-series) to Kime-Surfaces

fMRI Finger-tapping Experimental Design

LEROT orr: P Egod MRI Signal oFF:
Ej 1 poct
f 8 Finger-taping Epochs t = 160/
oN | 10 10, 10 |10 . 10 |.~10 0 | [ 10| |time
OFF| i 10 01 0 | 10 | 10 R o |

\ 8 Rest-state Epochs =T
Ll

@ _ @
o 3
3 3
g g
o 5
H 5
3 H
@ . @,
Kime-
surfaces
Kime-series
Activation: ON MRI Intensities: f(x) = f(t.¢) = Ae” Rest: OFF
state state

20

Mapping Longitudinal Data (Time-series) to Kime-Surfaces
Apply the ILT (£~ ) to reconstruct a time-series, £ (£) = £~(F)(t):
F(z) = L(f) =
f@®) =£7%(
L7F) + (L
L7(L(f) (
f@® = L7HE)®) = f1(0) + (fo * £:)(0) + fo(®) =

¢
et +f sin(t) X cos(t —Ddr+t=t+e " +
o

Tensor-based Linear Modeling of fMRI

3-Step Analysis: registering the fMRI data into a brain atlas space, 56 ROIs, tensor
linear modeling, post-hoc FDR processing & selection of large clusters of significant
voxels are identified within the important ROIs: Y = ﬁﬂ SLRES

time ROI b-box
The dimensions of the time-tensor ¥ are 160 x @ X b X ¢, where the tensor elements represent
the response variable Y[t, x,y, z], i.e., fMRI intensity. For fMRI magnitude (real-valued signal),
the design kime-tensor X dimensions are: 108 4 x1

Step 1: ROI analysis Step 2: Voxel analysis

Voxel-based TLM/Analysis
Corrected (step 3, left) vs. Raw (step 2, right)

QP A B Step 3: 2D voxel analysis projections
4 (finger-tapping task modeling) M
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Mapping Longitudinal Data (Time-series) to Kime-Surfaces

The forward and inverse (continuous) Laplace transforms are defined below.

« For a given function (of time) £(t): — C, the Laplace transform is the function
of a complex frequency argument, F(z) = L(f)(2):C - C:

L@ = F(2) = f“fmefﬂm.
0

For a given function of a complex frequency argument, F(z), the Inverse Laplace
transform (ILT) is the function of a positive real (time-like) argument f(t) =
L7Y(F)(t):R* - C, which is defined in terms of a complex path integral (a.k.a.
Bromwich integral or Fourier-Mellin integral)

1 i
f®) =LY F)(®) - i e?F(z)dz,

where the parameter y € R is chosen so that the entire complex contour path of the

integral is inside of r of conve fF(z).

robability and statistics, the Laplace transform plays the r 0
andom variable, then its Lapla re m, i.e., the LT s probability density
function fy, is given by the expectation of an exponential: L(X) = L(f)(z) = E(e™?

2D Fourier Transform —
The Importance of Magnitudes & Phases

Fourier Analysis
(real part of the Forward Fou

F(saturn)

Fourier Synthesis
(real part of the Inverse Fourier Transform)
Earth Saturn

g3 WS

IFT using Earth-magnitude IFT using Earth-magnitude  IFT using Saturn-magnitude _IFT using Saturn-magnitude
& Saturn-phase & nil-phase & Earth-phase &nil-phase

Bayesian Inference Representation

0 Suppose we have a single spacetime observation X = {,\'lo} ~px|y)andy ~
p(y | ¢ = phase) is a process parameter (or vector) that we are trying to estimate.

0O Spacekime analytics aims to make appropriate inference about the process X.

QO The sampling distribution, p(x | y), is the distribution of the observed data X
conditional on the parameter y and the prior distribution, p(y | ¢), of the parameter
y before the data X is observed, ¢ = phase aggregat

0 Assume that the hyperparameter (vector) ¢, which represents the kime-phase
estimates for the process, can be estimated by ¢ = ¢'.

Q Such estimates may be obtained from an oracle (model distribution), approximated
using similar datasets, acquired as phases from samples of analogous processes,
derived via some phase-aggregation strategy, or computed via Laplace transform.

Q Let the posterior distribution of the parameter y given the observed data X {-"io}
be p(y|X, ") and the process parameter distribution of the kime-phase
hyperparameter vector ¢ be y ~ p(y | ¢).
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Bayesian Inference Simulation

QO Simulation example using 2 random samples drawn from mixture distributions
each of n, = ng = 10K observations:
4 where X, ; = 0.3U; + 0.7V, U; ~ N(0,1) and V; ~ N(5,3), and

Bayesian Inference Simulation

Summary statistics for the original process (cohort 4) and the corresponding
values of their counterparts computed using the spacekime reconstructed

= signals based on kime-phases of cohorts B, €, and D. The estimates for the
8 {Xp,};2;, where Xp; = 0.4P; + 0.6Q;, P; ~ N(20,20) and Q; ~ N(100,30). latter three cohorts correspond to reconstructions using a single spacetime
observation (i.e., single kime-magnitude) and alternative kime-phase priors (in
this case, kime-phases derived from cohorts B, C, and D).

Spacekime Reconstructions (single kime-magnitude)
(A) (©) (D)

(B)
m Original Phase=Diff. Process Phase=True Phase=Independent
[ ™in]

Q Transform all four cohorts into Fourier k-space, -2.38798 -3.798440 -2.98116 -2.69808
Q Iteratively randomly sample single observations from the (training) cohort C, 1‘)’3‘39335;’ 1‘)’-05:9527;’: 'g-ggzgi 'g-gsgig
0O Reconstruct the data into spacetime using a single kime-magnitude value and LTI 0.00000 0.000000 0.00000 0.00000

alternative kime-phase estimates derived from cohorts B, €, and D, and 075772 0645119 072795 0.69889

B . ) . [ max] 3.61346 3.986702 3.64800 3.22087

O Compute the classical spacetime-derived population characteristics of cohort 0.348269 0.001021943 0.2372526 031398
A and compare them to their spacekime counterparts obtained using a single | Kurtosis E3v/ 0.2149918 -0.4452207 -0.3270084

C kime-magnitude paired with B, C, or D kime-phases.

QO The intensities of cohorts A and B are independent and follow different mixture
distributions. We'll split the first cohort (A) into training (€) and testing (D)
subgroups, and thel

Bayesian Inference Simulation

The correlation between the original data (4) and its reconstruction using a single
kime magnitude and the correct kime-phases (C) is p(A

Bayesian Inference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data
analytic problem using a simulated bimodal experiment:

X, = 0.3U + 0.7V, where U ~ N(0,1) and V ~ N(5,3)
This strong correlation suggests that a substantial part of the A process energy
can be recovered using only a single observation. In this case, to reconstruct the
signal back into spacetime and compute the corresponding correlation, we used a
single kime-magnitude (sample-size=1) and process C kime-phases.

Specifically, we will illustrate the Bayesian inference using repeated single
spacetime observations from cohort 4, X = {.\-[D}, and varying kime-phase priors
(6 = phase aggregator) obtained from cohorts B, C, or D, using different posterior
e predictive distributions.

s Spacesm soverann s prect e smses

Relations between the empirical data distribution ( ) and samples from
the posterior predictive distribution, representing Bayesian simulated spacekime
reconstructions (light-blue). The derived Bayesian estimates do not perfectly
match the empirical distribution of the simulated data, yet there is clearly
information encoding that is captured by the spacekime data reconstructions.

This signal compression can be exploited by subsequent model-based or model-
free data analytic strategies for retrospective prediction, prospective forecasting,
ML classification, Al derived clustering, and other spacekime inference methods.

Bayesian Inference Simulation Spacekime Analytics: Resources & Demos

Bayesian
simulated
spacekime .
reconsitucions Q Tutorials
Samples from
the posterior

predictive
distribution

— U R Package

Distributions Bivariate test statistic (mean & standard deviation)

e

O GitHub

O Pubs

atistic (inter-qu
rk blue) and sampl
mulated
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