

Wang et al., 2022 | Dinov & Velev (2021)

Kime-Phase Tomography (KPT), phase recovery	
 <i>Kime representa</i> Complex-time (<i>I</i> Kime-phase, ran Solutions of ultra Mapping Time-set 	ation of repeated measurement longitudinal processes kime) & rationale ndom sampling & Heisenberg's Uncertainty ahyperbolic wave equations series → Kime-surfaces
□ Kime-Phase Ton	nography (KPT), recovery of the phase distribution
Spacekime Anal	ytic Applications
.5	

Kime-Phase Tomography (KPT), phase recovery

- **Definition 1** (*Kime-Domain Signal Space*). Let $\mathcal{H}_t = L^2(\mathbb{R})$ be the Hilbert space of square-integrable complex-valued functions on the time domain, with inner product $\langle f, g \rangle_{\mathcal{H}_t} = \int_{\mathbb{R}} f(t) \overline{g(t)} dt$.
- **Definition 2** (*Phase-Domain Space*). Let $\mathcal{H}_{\theta} = L^2([-\pi, \pi])$ be the Hilbert space of square-integrable functions on the phase domain, with inner product $\langle \psi, \phi \rangle_{\mathcal{H}_{\theta}} = \int_{-\pi}^{\pi} \psi(\theta) \overline{\phi(\theta)} \, d\theta$ equipped with periodic boundary conditions $\psi(-\pi) = \psi(\pi)$.
- **Definition 3** (*Kime Space*). The kime space \mathcal{K} is defined as the tensor product $\mathcal{H}_t \otimes \mathcal{H}_{\theta}$, representing signals in both time and phase domains.
- **Definition 4** (*Reproducing Kernel Hilbert Space, RKHS*). The RKHS \mathcal{R}_K is a subspace of \mathcal{H}_t with reproducing kernel $K: \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ satisfying
 - For any $t \in \mathbb{R}$, $K(\cdot, t) \in \mathcal{R}_K$, and
 - For any $f \in \mathcal{R}_K$ and $t \in \mathbb{R}$, $f(t) = \langle f, K(\cdot, t) \rangle_{\mathcal{R}_K}$

Definition 5 (*Kime-Phase Distribution*). A kime-phase distribution $\Phi(\theta; t)$ is a time-dependent probability density function on $[-\pi, \pi]$ satisfying $\Phi(\theta; t) \ge 0$, $\int_{-\pi}^{\pi} \Phi(\theta; t) d\theta = 1 \quad \forall t \in \mathbb{R}$.

Kime-Phase Tomography (KPT), phase recovery

Definition 6 (*Complex Kime*). For each time t, the complex kime is defined as $\kappa(t) = te^{i\theta(t)}$, where $\theta(t) \sim \Phi(\cdot; t)$.

Definition 7 (Primary Kime Operators). For a signal s(t), the primary kime operators include

- 1. Time-domain operator: $K_1: \mathcal{H}_t \to \mathcal{H}_t$ defined by $K_1[s](t) = t \cdot s(t)$.
- 2. Frequency-Domain Operator: $K_2: \mathcal{H}_t \to \mathcal{H}_t$ defined by $K_2[s](t) = -i\frac{d}{dt}s(t)$, and
- 3. Scale-Domain Operator: For a mother wavelet $\psi \in \mathcal{H}_t$, let $W_{\psi}[s](a,b) = \langle s, \psi_{a,b} \rangle_{\mathcal{H}_t}$ be continuous wavelet transform with $\psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right)$. Then, the scale-domain operator $K_3: \mathcal{H}_t \to \mathcal{H}_t$ is

$$K_3[s](t) = \int_{\mathbb{R}} \int_{\mathbb{R}_+} W_{\psi}[s](a,b) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) \frac{da \, db}{a^2}$$

- 4. Phase-Domain Operators: In \mathcal{H}_{θ} , we can define a pair of QM-equivalent phase-domain operators: a. Position operator: $\Theta[\phi](\theta) = \theta \cdot \phi(\theta)$, and
 - b. Momentum operator: $P[\phi](\theta) = -i \frac{d}{d\theta} \phi(\theta)$.
- 5. RKHS Projection Operator: Given a kernel K, $\mathcal{P}_K: \mathcal{H}_t \to \mathcal{R}_K$ is defined by $\mathcal{P}_K[s](t) = \int_{\mathbb{R}} s(\tau) K(t, \tau) d\tau$.

Kime-Phase Tomography (KPT), phase recovery

Definition 8 (Observable Signal). An observable kime-signal s(t) with amplitude A(t) and phase $\phi(t)$ is defined as $s(t) = A(t)e^{i\phi(t)}$, where $\phi(t)$ is sampled from distribution $\Phi_{[-\pi,\pi)}(\cdot; t)$.

Definition 9 (fMRI BOLD Signal Model). In fMRI, the observed BOLD signal x(t) can be modeled as $x(t) = \int_{\mathbb{R}} h(t - \tau)s(\tau) d\tau + \epsilon(t)$, where h(t) is the hemodynamic response function and $\epsilon(t)$ is noise.

This kime-operator framework is used for kime-phase recovery using repeated measurement observations of a controlled experiment, e.g., repeated fMRI runs in an event-related block design.

Theorem 1 (*Time-Frequency Commutation*). The operators K_1 (time-domain operator) and K_2 (frequency-domain operator) are *incompatible*, i.e., they have a non-trivial commutator, $[K_1, K_2] = K_1K_2 - K_2K_1 = i\mathcal{I}$, where \mathcal{I} is the identity operator on \mathcal{H}_t . This indicates that the phase-reconstructions corresponding to this pair of kime-operators <u>differentially probe the kime-phase</u> and jointly, they recover complementary phase information.

Kime-Phase Tomography (KPT), phase recovery

Theorem 2 (Uncertainty Relation). Given a signal $s \in \mathcal{H}_t$, time & frequency operators are non-commutative

$$\Delta K_1 \cdot \Delta K_2 \ge \frac{1}{2} |\langle [K_1, K_2] \rangle| = \frac{1}{2},$$

where $\Delta K_j = \sqrt{\langle K_j^2 \rangle - \langle K_j \rangle^2}$ for j = 1,2 and expectations are with respect to s.

Theorem 3 (*RKHS Representation*). Given a signal $s \in \mathcal{H}_t$ and a reproducing kernel K, the phase function $\phi(t)$ can be represented as the *argument* of the RKHS projection operator, $\mathcal{P}_K: \mathcal{H}_t \to \mathbb{C} \ni \mathcal{P}_K[s](t)$, i.e., $\phi(t) = \arg(\mathcal{P}_K[s](t))$.

Phase Estimate

19

<text><text><list-item><list-item><list-item><list-item>

Available Resources SOCR Motto – "It's Online & Freely Accessible, Therefore it Exists!" Pubs: https://socr.umich.edu/people/dinov/publications.html GitHub: https://github.com/SOCR Datasets: https://wiki.socr.umich.edu/index.php/SOCR Data AI Apps: https://socr.umich.edu/HTML5/ (SOCR AI Bot) \Box Demos: https://DSPA2.predictive.space Tutorials: https://TCIU.predictive.space & https://SpaceKime.org Website: https://socr.umich.edu Contact: statistics@umich.edu

Μ

