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Complex-Time (Kime)

U At a given spatial location, x, complex time (kime) is defined by
Kk = re'? € C, where:
U The magnitude (r > 0) represents the longitudinal order of
events characterizing the displacement in time, and
QO The event phase (¢~®(7)[_z,x)) is an angular displacement,
event direction, reflecting a random sampling index
O There are multiple alternative parametrizations of kime in the
complex plane
O Space-kime manifold is R3 x C:
Q (x, ky) and (x, k) are spatially co-localized, but have different
kime coordinates,
Q (x kq) and (y, k) are co-localized in kime, but represent
different spatial locations,
Q (x, ky) and (x, k3) have the same spatial-locations and kime-
directions, but appear ordered sequentially in time, r, < 1y.

Historical Background: Kaluza-Klein Theory

U Theodor Kaluza (1921) developed a math
extension of the classical general relativity
theory to 5D. This included the metric, the
field equations, the equations of motion, the
stress-energy tensor, and the cylinder
condition. Physicist Oskar Klein (1926)
interpreted Kaluza's 3D+2D theory in
guantum mechanical space and proposed
that the fifth dimension was curled up and
microscopic.

U The topology of the 5D Kaluza-Klein
spacetime is K, = M* x S, where M* is a 4D
Minkowski spacetime and S is a circle (non-
traversable).
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Rationale for Time = Kime Extension

Math — Time is a special case of kime, k = |x|e? where ¢ = 0
Time (R*) is a subgroup of the multiplicative Reals group
Whereas kime (C) is an algebraically closed prime field that
naturally extends time
Time is ordered but kime is not!

Kime (C) represents the smallest natural extension of time, as a
complete field that agrees with time

Physics —

* The Problem of Time: Time has different meanings in quantum
mechanics & general relativity; leading to a tension in
formulating a Quantum Gravity Theory unifying the two ...
(DOI 10.1007/978-3-319-58848-3)

* (Base-field) R and C Hilbert-space quantum theories make
different predictions (DOI: 10.1038/s41586-021-04160-4)

Wesson (2004, 2010)

Al/Data Science — Random IID sampling, Bayesian reps, tensor oinov & Veley (2021)
- .. . ang et al. (2022)
modeling of C kimesurfaces, novel analytics Zhang et al. (2023)

Dinov & Shen (2024)

Kime-Phase Measurement, Observability & Kime Operator

Kime-Phase Simulation — Repeated Spacetime Measurement

3 Processes — Green, Red and Blue colors (scatter points)

1 Fixed spatial location (vertical axis represents 1D space)

Repeated IID Measurements colocalized in 4D spacetime 08

3 Different Kime-Phase distributions (color-coded)

Radial displacement t = time

Angular (phase) location ¢ ~ ®[_; ) (£)
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Ultrahyperbolic PDEs: Wave Equation — Cauchy Initial Data

U For ultrahyperbolic PDEs, the initial value problem, determining the solution(s) for a given initial
condition, is ill-posed, i.e., there's no guarantee of a global well-defined, stable, and unique solution!

U Nonlocal constraints yield the existence, uniqueness & stability of local and global solutions to the
ultrahyperbolic wave equation under Cauchy initial data ...

ds de
Z 0fu= Aau(x,k) = Au(x k) = Z ou,
i=1 i=1

U, = u( x ,O,K_l) = f(x,k_q)
X€EDg KED¢
Uy = O, u(x,0,k_1) = g(x, K_1)

spatial Laplacian temporal Laplacian initial conditions (Cauchy Data)

where x = (x1,x2, ...,xds) € R% and k = (K1,Kz, ...,Kdl) € R% are the Cartesian coordinates in the d space and d; time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints |&] = |n_4] :

8 (6 012 = c0s (2 T 1) B ) + sin (2 P - mv)% .
K ! _,_—_1/

U\ _ (T _ (To(Em-1)) _ a(§,n-1)
wnere (1) = (57) = (fh(ami)) B (a,qa(an_l))'

u (x, K1, K—l) =F 1 @)(x k) = f W(E, 101, m—1) X 2T x @2mile1n-0qg dy_, .

K DgxD¢_,

Ultrahyperbolic Wave Equation — Cauchy Initial Data

O Math Generalizations:

Derived other spacekime concepts: law of addition
of velocities, energy-momentum conservation law,
stability conditions for particles moving in
spacekime, conditions for nonzero rest particle
mass, causal structure of spacekime, and solutions
of the ultrahyperbolic wave equation under Cauchy
initial data ...

(Example Solution in 2D space + 2D kime)
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|dea: Longitudinal Data = Kime-Transforms = PDEs = Al

Apps Time < Kime Transformation Wave equation Solutions (kime) dynamics Prospective Data Science Applications
A
3 i
(]
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o
fMRI time-series fMRI kime-surfaces Cross sections Volume rendering 3D p-value map Stat significance
X-ray Diffraction (XRD) XRD Signal Time-Frequency 2D Dislocation Bayesian Reconstr. Predict strain fields
Crystallography Analysis Strain Field Strain Field or defect dynamics
r il = Structural Ghange Detection (FOR < 0.05)
i
] s
& e
@
>
£
o
Time-dynamic structural Wavelet or Hilbert transform of Takagi-Taupin PDE model of dynamical Phonon modes at
phase transitions time-dependent diffraction X-ray diffraction in deformed crystals phase transition

Random Sampling & Kime-Phase Paradigm

Kime phase distributions are mostly symmetric, random observations = phase sampling

Kime-Phases Circular distribution
S = e
e s | 7 st om0 || ipannmatiy

Fesiigrams and Summares | Gstrbutons

]
? 3 -
£ N
' 5 .
3‘ =
st Dwtcmton . = = a
S
=] .
g‘
Samping Dust. of Meams, N+100 ]
e i 5‘ N=2 Bandwidth =25 Unit= radians
https://wiki.socr.umich.edu/index.php/SOCR_EduMaterials_Activities GeneralCentralLimitTheorem https://www.socr.umich.edu/TCIU/HTMLs/Chapter6 Kime Phases Circular.html
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Spacetime Time-series = Spacekime Kimesurfaces = TLM

Rewult

l nany
Difference for ON & OFF Kime-Surface/Kime-Series at a fixed voxel location
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Mapping Longitudinal Data (Time-series) = Kime-surfaces

fMRI Finger-tapping Experimental Design

LEPR o ON-Epoq fMRI Signal OFF:
Epoch 1 Epoch @
8 Finger-taping Epochs t =160
ON | 10 10 10 | 10 7 b, 104 [.10 10 | | 10 | |time
10 KD 10 1 10 | [ 10 | 10 0.\ 10 |
Qlenk 8 Rest-state Epochs

g ©
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o = =
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5 s : 5
) i - 7 4 :
Kime 7 i;"r“%@ J/ |
surfaces <3t
Kime-series :
Activation: ON fMRI Intensities: f(x) = f(t, @) = Ae'® Rest: OFF

state state
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(Analytic) Mapping Time-series = Kime-surfaces

Apply the Inverse Laplace Transform, ILT (£~ ) to reconstruct a time-series, f(t) = L™X(F)(¢):

F2) = £(f) = 1 1 z 1
A== g Y 7z X 7z 7
N——— N e’ D am— S——

F(2)=L(fi()=e™Y)  FR(2)=L(f(t)=sin(®t)) F@)=L(fz{H)=cos®)) F(D)=L{fs(t)=1)

fO=LYF)=L'(F,+F,xF3+F))=L""(F)+ (L_l(Fz) * L_l(F3)) ®+L7HF =

convolution

L7HLD)® + (£7H(EE) = £7H(L))) (O + LHLE) @),

t tsin(t
F®O=LTF)®) =B+ (L)) + fo(0) = et + f sin(t) xcos(t —t)dt+t=t+e t + Slrzl( )
0
Repeated Longitudinal 1 R ot
Data Sampling f@®) =L (L(f))(t) F-uto i o 101 o D)+ a2 Inverse stereographic projection
ILT Reconstructed IMRI Time-series. f=ILT(F) F(Z) - L(f())(z) !

Reg(F)(2) = Reg(L(F))(2)

Mapping Longitudinal Data (Time-series) = Kime-surfaces

Kimesurface Visualization of fMRI ON and OFF
Laplace Transform
(ON), (OFF) (OVERLAY)

f(t) = cos(t) , Raw simulated fMRI On/Off data
: : ", ) i Low SNR; y axis is kime-phase,
indexing the repeated runs within a
participant and the multiple samples
across participants

& s, s B~
& ) 7,

Kimesurface Visualization of fMRI ON and OFF

=
z E g (ON) (OFF) (OVERLAY)
4B : Simulated fMRI data, multiple runs
=2 5. =3 h ~ For each stimulus condition, each
38 % run/time point is Laplace-distributed,
iy T2 = 6;;(t;)) ~ Laplace(0,by + a t;)
@ . .
S3ls ; y Regqularize the 2D (t,6) domain by
E g :‘i - —— ﬁ‘f{. ;:' SO S fitting a thin-plate spline (TPS)
(:r"j = IR A AT T
ST g
m o
S




3/12/2025

Kime-Phase Tomography (KPT), phase recovery
- )

U Kime-Phase Tomography (KPT), recovery of the phase distribution

\_ Y,
M
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Kime-Phase Tomography (KPT), phase recovery

Definition 1 (Kime-Domain Signal Space). Let H; = L?(R) be the Hilbert space of square-integrable complex-valued
functions on the time domain, with inner product (f, g)s, = f]Rf () g(®)dt.

Definition 2 (Phase-Domain Space). Let Hy = L?([—m, mr]) be the Hilbert space of square-integrable functions on the
phase domain, with inner product (, )3, = f_nnl,b (0)¢(0) d6 equipped with periodic boundary conditions
Y(—m) =P (m).

Definition 3 (Kime Space). The kime space X is defined as the tensor product H; & Hy, representing signals in both
time and phase domains.

Definition 4 (Reproducing Kernel Hilbert Space, RKHS). The RKHS R is a subspace of H; with reproducing kernel
K:R x R — C satisfying

e Foranyt € R,K(:,t) € Rg,and
e Foranyf € Rgandt € R, f(t) = (f,K(, )z,

Definition 5 (Kime-Phase Distribution). A kime-phase distribution @(8; t) is a time-dependent probability density
function on [—m, ] satisfying @(9;t) = 0, f_ﬂn(D 6;t)do =1 VteR.

16
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Kime-Phase Tomography (KPT), phase recovery

Definition 6 (Complex Kime). For each time t, the complex kime is defined as k(t) = te®® where
0(t) ~ o(;t).
Definition 7 (Primary Kime Operators). For a signal s(t), the primary kime operators include
1. Time-domain operator: Ky: H; — H, defined by K;[s](t) =t - s(t).
2. Frequency-Domain Operator: K,: H; — H, defined by K, [s](t) = —i%s(t), and
3. Scale-Domain Operator: For a mother wavelet ) € Hy, let Wyy[s](a, b) = (s,Yqp)3, be continuous
wavelet transform with i, , (t) = %w (%) Then, the scale-domain operator K3: H; = H; is

61510 = [ [ wylsien) u(—2)

S = slia, f— .

’ R /R, v Va a a?

4. Phase-Domain Operators: In Hg, we can define a pair of QM-equivalent phase-domain operators:
a. Position operator: O[¢](6) = 6 - ¢(6), and

b. Momentum operator: P[¢](8) = —i:—9¢(0).
5. RKHS Projection Operator: Given a kernel K, Py: H; = Ry is defined by Py[s](t) = fRs (DK (¢, 1) dr.

17

Kime-Phase Tomography (KPT), phase recovery

Definition 8 (Observable Signal). An observable kime-signal s(t) with amplitude A(t) and phase ¢(t) is
defined as s(t) = A(t)e'?®, where ¢(t) is sampled from distribution @_p 7 (:; £).

Definition 9 (fMRI BOLD Signal Model). In fMRI, the observed BOLD signal x(t) can be modeled as
x(t) = th (t — 1)s(7) dt + €(t), where h(t) is the hemodynamic response function and €(t) is noise.

This kime-operator framework is used for kime-phase recovery using repeated measurement
observations of a controlled experiment, e.g., repeated fMRI runs in an event-related block design.

Theorem 1 (Time-Frequency Commutation). The operators K; (time-domain operator)
and K, (frequency-domain operator) are incompatible, i.e., they have a non-trivial
commutator, [Ky, K,] = K;K, — K,K; = iJ, where 7 is the identity operator on H.
This indicates that the phase-reconstructions corresponding to this pair of kime-
operators differentially probe the kime-phase and jointly, they recover
complementary phase information.

18
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Kime-Phase Tomography (KPT), phase recovery

Theorem 2 (Uncertainty Relation). Given a signal s € H}, time & frequency operators
are non-commutative

1 1
AK; - AK; 2 §|([K1»K2])| =3
where AK; = /(sz) — (K;)? for j = 1,2 and expectations are with respect to s.

Theorem 3 (RKHS Representation). Given a signal s € H; and a reproducing kernel K,
the phase function ¢ (t) can be represented as the argument of the RKHS projection

operator, Pg: H; — C 3 Pg[s](t),i.e., p(t) = arg(?K[s] (t)).

Phase Estimate

19

Kime-Phase Tomography (KPT), phase recovery

Lemma (Phase Recovery from Multiple Bases). Given repeated observations in multiple non-commuting
bases defined by (time, freq & scale) operators K;, K, K3, the kime-phase distribution ®(0;t) can be
uniquely determined if the observations are sufficient.

Theorem 4 (Generalized Phase Recovery from Multiple Bases). Given a kime-phase
distribution @(60; t) and assuming sufficient observations in multiple non-
commuting bases defined by operators K, K5, K3, the phase distribution can be
uniquely determined under certain uniqueness conditions

1. Trigonometric Moment Identifiability: A circular distribution is uniquely determined by its
complete set of trigonometric moments {ay, Bi }r=1 Where a; = E[cos(k0)] and B, = E[sin(k8)],

2. Information Complementarity: The (time, freq & scale) operators K, K,, K3 must provide
complementary information about different moments of the phase distribution, and

3. Sufficiency Condition: The observations must constrain enough trigonometric moments to
uniquely specify @(8; t) within the class of distributions being considered.

20
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Algorithm: Kime-Phase Tomography(KPT) fMRIS/m

Hemeodynamic Re: & Fun: (HRF) Models

Input: BOLD time series {xn(t)}n , and kernel K
Output: Estimated phase ¢ (t)
1. Project each signal to RKHS: sX(t) = Px[s,]1(t)
2. Compute time-domain phase:
NOE arg(t S (t))
3. Compute frequency domain phase using STFT, )
¢§(t) = arg(?’[s,’f “w](t, wmax))r where wpyayx
is the frequency with maximum power 2
4. Compute scale-domain phase using CWT:

Kt) = arg (Ww [sK1(amax t)) where ap, is
the scale with maximum power
5. Compute weighted average (ensemble KPT):

centration ParameterPhase (radian

k Jk KPT fMRI Simulation
N ipK Recovery of ¢ using
¢(t) = arg z Wj (t)eld)] @) von Mises(u, k)

j=1 USM true phase distribution

Weight Con

21

Applications: Spacekime Analytics
4 )

Q Applications: Spacekime Analytics

22
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Example: Tensor-based Linear Modeling of fMRI

3-Step Analysis: registering the fMRI data into a brain atlas space, :
56 ROls, tensor linear modeling, post-hoc FDR processing & ‘

selection of large clusters of significant voxels are identified within
the important ROls:

Y= (X,B) +E

tensor product
time  ROIb-bo Step 1: ROl analysis Step 2: Voxel analysis

The dimensions of the time-tensor Y are 160 x a x b x ¢, where the tensor
elements represent the response variable Y[t, x, y, z], i.e., fMRI intensity. ‘
For fMRI magnitude (real-valued signal), the design kime-tensor X ; VR
dimensions are:
108 x  State x 4 x1. Q.5
=

T v s )
Kime(Timexei*Repeat)  Stimvs.Rest (2) effects

s
)
&

Step 3: 2D voxel

analysis projections Voxel-based TLM/Analysis
(finger-tapping task Corrected (step 3, left) vs. Raw (step 2, right)
modeling)

Spacekime Open-Problems

A There are many unsolved abstract mathematical challenges, e.g., space-kime
ergodicity, metric tensor, kime-operator(s), etc.

3  Numerical & Computational problems, e.g., reliable kime-phase tomography
(KPT), optimal time-series = kime-surface reconstructions, etc.

3  Physics parallels, e.g., contrasting QM vs. Spacekime predictions, physical
observability, spacekime measurement, and kime-operator formalism

3 Analytical challenges, e.g., new Al techniques for kime-surfaces, analytical
verifiability & falsifiability of spacekime theory

24
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Spacekime Analytics Tutorial

]

Spacekime Analytics (Time Complexity and
Inferential Uncertainty)

Basic TCIU Protocol for Predictive Spacekime Analytics using Repeated-
Measurement Longitudinal Data

SOCR Team
10/23/2024
This kime T

TCIU/Spacekime Analytics
Tutorial:

Basic TCIU Protocol for
Predictive Spacekime
Analytics using
Longitudinal Data

1 Preliminary setup
TCIU and other R package dependenci

https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_TCIU Basic_SpacekimePredictiveAnalytics.html
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Available Resources

SOCR Motto — “It’s Online & Freely Accessible, Therefore it Exists!”

Pubs: https://socr.umich.edu/people/dinov/publications.html
GitHub: https://github.com/SOCR

Datasets: https://wiki.socr.umich.edu/index.php/SOCR Data

Al Apps: https://socr.umich.edu/HTML5/ (SOCR Al Bot)
Demos: https://DSPA2.predictive.space

Tutorials: https://TCIU.predictive.space & https://SpaceKime.org
Website:  https://socr.umich.edu

Contact:  statistics@umich.edu

26
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