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fEI Data Science = need-based information compression & expansion \
Complex-time (kime) & rationale

Kime-phase, random sampling & Heisenberg’s Uncertainty

Solutions of ultrahyperbolic wave equations

Open spacekime problems

Data science applications

Bayesian formulation of spacekime inference

Resources, live demo links & prospective DS R&D, education & practice
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Part 2: Hands-on Spacekime Analytics Tutorial (Demos) )




Duality of Evidence-based Scientific Discovery
experimental = theoretical 2 computational = data sciences
Ma Analysis Synthesis
Examples Observables/Data = Compact Models Compact Models = (simulated, actionable info)
1. Lossless (A.1.1) Linear transform, L: V - W, e.g., 2D rigid body (S.1.1) Inverse linear transform, L=%: W - V, e.g.,
cosf® —sinf rotation _ cos @ sin 6 rotation 1 _
Math - (sine cos @ ):RZ RZ 1= (—siné) cose):]R2 R, ; Lt =1
Transforms (A.1.2) Fourier transform: f(w) = ffowf(x)e"zm"xdx (S.1.2) Inverse Fourier (IFT): f(x) = ffomf(w)elz”“’xdw
(A.2.1) DNA Packing in Chromatin Fiber (S.2.1) DNA Unpacking
2. DNA Chromosomes contain enormously long linear DNA The process of unfolding the DNA from the chromosome to
: molecules associated with proteins that fold and pack the support the processes of gene expression, DNA replication,
fine DNA double helix into a tight compact structure and DNA repair
3. Lossy (A.3.1) Info Compression, i (S.3.1) Information Inflation, Simulation & Generation, e.g.,
e.g., linear models forecasting, regression, interpolation, extrapolation
Data/Stats Y = 4582.70 + 212.29X mod
Science Datg BBt (predict & classify new data): Input —— Output
ata —— Mode
4. Artificial & i) BUI|dII’:I Fitting & Tr.alnm @ (S.4.1) Generative Artificial =
large foundational, generative . . SOCR Al ot v.23
Augmented g deep network Al models @ Intelligence MOde(!:;,%[ = g >
Intelligence Data human+infrast GAIM Human Prompt — Result 5°-E
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Complex-Time (Kime)

O At a given spatial location, x, complex time (kime) is defined
by k = re'® € C, where:

O the magnitude represents the longitudinal events order
(r > 0) and characterizes the longitudinal displacement in
time, and
event phase (—m < ¢ < m) is an angular displacement,
event direction, or random sampling index
O There are multiple alternative parametrizations of kime in the

complex plane :
O Space-kime manifold is R? x C:

U (x,kq) and (x, k4) have the same spacetime
representation, but different spacekime coordinates,
(x,kq) and (y, k;) share the same kime, but represent
different spatial locations,

(x, k3) and (x, k3) have the same spatial-locations and
kime-directions, but appear sequentially in order, 1, < 1.
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Historical Background: Kaluza-Klein Theory

U Theodor Kaluza (1921) developed a math
extension of the classical general relativity
theory to 5D. This included the metric, the
field equations, the equations of motion, the
stress-energy tensor, and the cylinder
condition. Physicist Oskar Klein (1926)
interpreted Kaluza's 3D+2D theory in
quantum mechanical space and proposed
that the fifth dimension was curled up and
microscopic.

U The topology of the 5D Kaluza-Klein
spacetime is K, = M* x S, where M* is a 4D
Minkowski spacetime and S1 is a circle (non-
traversable).

Al & Spacekime Analytics

Rationale for Time — Kime Extension

Math — Time is a special case of kime, k = |k|e!® where ¢ = 0
Time (R*) is a subgroup of the multiplicative Reals group
Whereas kime (C) is an algebraically closed prime field that
naturally extends time
Time is ordered but kime is not!

Kime (C) represents the smallest natural extension of time, as a
complete filed that agrees with time

Physics —
Problem of time ... (DOI 10.1007/978-3-319-58848-3)
R and C Hilbert-space quantum theories make different
predictions (DOI: 10.1038/s41586-021-04160-4)

Wesson (2004, 2010)

Bio Al/Data Science — Random 11D sampling, Bayesian reps, tensor 5\/‘23;;‘;?'2’0(;;’)2”
modeling of C kimesurfaces, novel analytics Zhang et al. (2023)

Dinov & Shen (2024)
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Uncertainty in 5D Spacekime

. 1\2 . . L .
In 5D space-time, Q = (Z) is the conformal factor, and L is a constant length defined in terms of the cosmological constant
3 —
A=—¢ 2z the metric signature (+, —, —, —),
A>0 for a spacelike extra coordinate, and A<0 for a time-like extra 5% coordinate, x* is the (D — 1) spacetime location,

and [ is the extra kime dimension.
The canonical spacekime metric is:

2
ds? = 2—223_2 2072 Gap (xH, Ddx%dx® + edl? (5D Spacekime line element and metric)

The 4D components of the spacekime equations of motion can be written explicitly in terms of the fifth force f* measured in
units of inertia mass, i. e assuming m=1:

RN dl dxP
X Yap
DL RNENE W) CEe
wur =1 aya -9 ”“ ds ds ol
The 5D component of the spaceklme equation of motion is:
a2l al 1 dl 2 99q 1 Ja
- - (& )| o Ehogueul 2 & gt =~ Lk 5 By (et ) &
In 5D spacekime, geodesic motion is perturbed by an extra 5% force f# = fl + fI , where

o fJ_ is normal to the 4-velocity w,, similar to other conventional forces, and fJ_ u, =0
o f”” is parallel to the 4-velocity u,, has no analog in 4D spacetime, and f“”u# *0
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Uncertainty in 5D Spacekime

U Assumingm = 1,c¢ = 1, near the foliation leaf membrane hypersurface, we have
(dp | dx) = ¥3_, dp* dx —L( )2 =L(ﬂ)2 ~h
u=0 U -l AN
derived from 5D Einstein deterministic field equ’s = uncertainty principle in 4D Minkowski spacetime
O In spacetime, Heisenberg’s uncertainty is due to lack of sufficient information about the 2" kime dimension, L.
O In Minkowski 4D spacetime, the lack of kime-phase information naturally leaves one degree of freedom (DoF)
in the system, which appears as Heisenberg’s uncertainty.
U In Bioinfo/Biostatistics, Data Science, ML/AI & longitudinal analysis, this extra DoF represents

process stochasticity — random sampling from an underlying probability distribution

 Spacekime formulation of the 4D spacetime observation of the Heisenberg’s principle also supports the de
Broglie-Bohm theory, which provides an explicit deterministic model of a system configuration and its
corresponding wavefunction

U 4D probabilistic spacetime is a spacekime embedding with an added degrees of freedom

O Bell's theorem suggests that any deterministic hidden-variable theory, which is consistent with quantum
mechanics predictions, has to be non-local. This implies the existence of instantaneous, faster than the speed
of light, interactions between particles that are significantly separated in 3D space (non-local relations).
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Ultrahyperbolic Wave Equation — Cauchy Initial Data

U Nonlocal constraints yield the existence, uniqueness & stability of local and global solutions to the
ultrahyperbolic wave equation under Cauchy initial data ...

x ,0,K_4
— L

Uy =U
X€EDg

) =f(x, K1)

KED;

ds de
Z 0fu= Au(x,k) = Aulx k) = Z ou,
i=1 i=1

Uy = B u(x, 0,K_1) = g(x,1_,)

spatial Laplacian temporal Laplacian initial conditions (Cauchy Data)

where x = (x1,x2, ...,xds) € R% and k = (K1,Kz, ...,Kdl) € R% are the Cartesian coordinates in the d space and d; time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints |&] = |n_4] :

8 (6 012 = c0s (2 T 1) B ) + sin (2 P - mv)% .
K ! _,_—_1/

€ n-1)
6K1ﬁ(f, 1-1)

e 7 ()= ) = g ) =

)

f (& Ky, m_q) X M) x p2milian-1)qg dy_, |

u (x, K1, K—l) =F @) (x, k) =
KuK-1
K DgxD¢_,

Ultrahyperbolic Wave Equation — Cauchy Initial Data

U Math Generalizations:
Derived other spacekime concepts: law of addition of
velocities, energy-momentum conservation law,
stability conditions for particles moving in spacekime,
conditions for nonzero rest particle mass, causal
structure of spacekime, and solutions of the
ultrahyperbolic wave equation under Cauchy initial
data ...
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Longitudinal Bio Data = Kime-Transforms = PDEs = Al

Time - Kime Transformation Wave equation Solutions (kime) dynamics Prospective Data Science Applications
"

fMRI time-series  fMRI kime-surfaces Cross sections Volume rendering 3D p-value map Stat significance

13

Random Sampling & Kime-Phase Paradigm

Kime phase distributions are mostly symmetric, random observations = phase sampling

Kime-Phases Circular distribution

Nate Dttt Horeod 05,10 By

k]
3 ~
g8 ~
£ ~
‘ =
—— :
3
a ——
Samtio it ofeass 160 ‘
Sempemy st o Variancs " N =2 Bandwidth =25 Unit = radians
https://wiki.socr.umich.edu/index.php/SOCR_EduMaterials_Activities GeneralCentralLimitTheorem https://www.socr.umich.edu/TCIU/HTMLs/Chapter6 Kime Phases Circular.html
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(Many) Spacekime Open Math Problems

Ergodicity
Let’s look at particle velocities in the 4D Minkowski spacetime (X), a measure space where gas particles move spatially and
evolve longitudinally in time. Let 4 = 1, be a measure on X, f(x,t) € L(X, u) be an integrable function (e.g., velocity of
a particle), and T: X — X be a measure-preserving transformation at position x € R® and time ¢t € R*.

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of f (e.g., velocity) over all particles in

the gas system at a fixed time, f = E.(f) = fR3f(x, t)du,, will be equal to the average f of just one particle (x) over the
entire time span,

~ . 1 . - ~

f=E(H) = lim (GEmoof(T™)), ie, (show) f = f.
The spatial probability measure is denoted by p, and the transformation T™x represents the dynamics (time evolution)
of the particle starting with an initial spatial location T°x = x.

Investigate the ergodic properties of various transformations in the 5D spacekime:

fE]EK(f)= ! -

) /() e = d

+1

t
(%ZM( [, t,¢)d<b>> =E(f)=f

space averaging

15

kime averaging

Mathematical-Physics = Bio-Data Science & Al

Physics

Bio-Data Sciences

A particle is a small localized object that permits
observations and characterization of its physical or
chemical properties

An object is something that exists by itself, actually or
potentially, concretely or abstractly, physically or incorporeal
(e.g., person, subject, etc.)

An observable a dynamic variable about particles that
can be measured

A feature is a dynamic variable or an attribute about an object
that can be measured

Particle state is an observable particle characteristic
(e.g., position, momentum)

Datum is an observed quantitative or qualitative value, an
instantiation, of a feature

Particle system is a collection of independent particles
and observable characteristics, in a closed system

Problem, aka Data System, is a collection of independent
objects and features, without necessarily being associated with
a priori hypotheses

Wave-function

Inference-function

Reference-Frame transforms (e.g., Lorentz)

Data transformations (e.g., wrangling, log-transform)

State of a system is an observed measurement of all
particles ~ wavefunction

Dataset (data) is an observed instance of a set of datum
elements about the problem system, 0 = {X,Y}

A particle system is computable if (1) the entire
system is logical, consistent, complete and (2) the
unknown internal states of the system don’t influence the
computation (wavefunction, intervals, probabilities, etc.)

Computable data object is a very special representation of a
dataset which allows direct application of computational
processing, modeling, analytics, or inference based on the
observed dataset

16




Mathematical-Physics = Bio-Data Science & Al

Physics

Data Science

Wavefunction

Wave equ problem:

9% 102
axz yzor) YD =0

Complex Solution:

w(x’ t) = Aeilkx-wt)
represents a traveling
wave,

w
where |;| =.

Inference function - describing a solution to a specific data analytic system (a problem). Examples:

e Alinear (GLM) model represents a solution of a prediction inference problem, ¥ = Xf3, where the
inference function quantifies the effects of all independent features (X) on the dependent outcome (Y),
data: 0 = {X,Y}:

$0) =p(X,¥) = f =B =(X|X)"{(X|¥) = (X"X)'XTY.

e A non-parametric, non-linear, alternative inference is SVM classification. If ¥, € H, is the lifting
function : R —» R4 (1: x € RT — % = 1, € H), where 1] < d, the kernel 1, (y) = (x|y): 0 x 0 -
R transformes non-linear to linear separation, the observed data 0; = {x;,y;} € R" are lifted to ¢, €
H. The SVM prediction operator is the weighted sum of the kernel functions at ¥¢,, where " is a
solution to the SVM regularized optimization:

Yol Bl =wx+b= Z?=1P;<¢O|¢0i>H +b,

predictions
regularizer fidelity
i ( zZ 4cym f-) OwTx®+p)>1-¢§,§ =0
el o llwll i=1$i/y 2 péi 2

The dual weight coefficients, p;, are multiplied by the label corresponding to each training instance, y®3.

Inference always depends on the (input) data; however, it does not have 1-1 and onto bijective
correspondence with the data, since the inference function quantifies predictions probabilistically.

GLM/SVM: [

17

Spacetime Time-series = Spacekime Kimesurfaces = TLM

Rewult

l nany
Difference for ON & OFF Kime-Surface/Kime-Series at a fixed voxel location

dd2
05 Rewult

trace 7

15 —— forecasted time serie

80% upper bound

80% lower bound

10 95% upper bound
95% lower bound

—— original time series

Value

00 -10

50 100 150
Time
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Mapping Longitudinal Bio-Data (Time-series) = Kime-Surfaces

fMRI Finger-tapping Experimental Design

LEPOP o ON: Epoc fMRI Signal OFF:
Epoch 1 Epoch @
8 Finger-taping Epochs t =160
ON | 10 10 10 | 10 | b, 104 | .10 10 | | 10 |  [time
OFF 10th | 10 1o f 10 | [ 10 | 10 A0, 10 |
tKI Sequential 8 Rest-state Epochs
observations

Samno, yoode g
.saAno, yoods g

Kime-
surfaces

Kime-series
Activation: ON fMRI Intensities: f(x) = f(t, ) = Ae'®
state state

19

(Analytic) Mapping Bio Time-series = Kime-surfaces

Apply the ILT (£71) to reconstruct a time-series, f(t) = L™1(F)(t):
1 1 z 1

f@=tp=" 753 * Za X Za v =

F(2)=L(fi()=e"")  F(2)=L(f2()=sin(t))  F3(2)=L(f3(t)=cos(t)) R(2)=L(3(0)=0)
f@®) =LYF) =LY (Fy+ F, X F3 + Fy) = L7H(F,) + (L_l(Fz) * L‘l(Fg)) O+ L7N(F) =

convolution

L7 LG + (£7HL) * £7H (L)) () + L7 (LU ®),

t -
FO=LTTF)O)=fHE)+(H* )@+ fo(t) = et +f sin(t) X cos(t —t)dt+t =t + et +w .

0

Repeated Longitudinal 1 o
Data Samp“ng f(t) = L (L(f))(t) FoL= 121 + (122 5 INHaand + 1) + 1iCs
ILT Reconstructed (MR! Time-series. f=ILT(F) F(Z) = L(f())(Z)

Inverse stereographic projection

Re(F)(2) = Reg(L(F))(2)

5/23/2024




Example: Tensor-based Linear Modeling of fMRI

3-Step Analysis: registering the fMRI data into a brain atlas space,
56 ROls, tensor linear modeling, post-hoc FDR processing &
selection of large clusters of significant voxels are identified within
the important ROls:

Y= (X, B)

N
tensor product
time ROI b-bo

The dimensions of the time-tensor Y are 160 x a x b x ¢, where the tensor
elements represent the response variable Y[t, x, y, z], i.e., fMRI intensity.
For fMRI magnitude (real-valued signal), the design kime-tensor X
dimensions are:

+ E

10+ 8 X State X 4 x1.
S——— N’ Nt Nl
Kime(Timesxei*Repeaty  Stimvs.Rest(2) effects R

Step 3: 2D voxel
analysis projections
(finger-tapping task
modeling)

Step 1: ROl analysis Step 2: Voxel analysis

&

Voxel-based TLM/Analysis
Corrected (step 3, left) vs. Raw (step 2, right)

Bayesian Inference Representation

process parameter (or vector) that we are trying to estimate.

where ¢ = phase aggregator.

process, can be estimated by ¢ = ¢'.

22

O Suppose we have a single spacetime observation X = {xio} ~p(x|y)andy ~p(y | ¢ = phase) is a

O Spacekime analytics aims to make appropriate inference about the process X.

U The sampling distribution, p(x | y), is the distribution of the observed data X conditional on the
parameter y and the prior distribution of the parameter y before the observing the data is p(y | ¢),

U Assume that the hyperparameter (vector) ¢, which represents the kime-phase estimates for the

O Such estimates may be obtained from an oracle (model distribution), approximated using similar
datasets, acquired as phases from samples of analogous processes, derived via some phase-
aggregation strategy, or analytically computed (e.g., via Laplace transform).

O Let the posterior distribution of the parameter y given the observed data X = {xio} be p(y|X, ¢") and
the process parameter distribution of the kime-phase hyperparameter vector ¢ be y ~ p(y | ).

5/23/2024
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Bayesian Inference Representation

O We can formulate spacekime inference as a Bayesian parameter estimation problem:

_ (v, X,9") _ p(Xly, ") Xpy, @) _ pXly,9") Xp, ') _
p(X,9") p(X, ") p(Xle") X p(p")

p(yIX, ")

posterior distribution

pXly,9") pr.e) pXly,e") Xplle')
X = 7 < pXly,¢") X pyle’) .
p(X|<p ) P((P ) \_p(X_/l(p ) likelihood prior

observed evidence

O In Bayesian terms, the posterior probability distribution of the unknown parameter y is proportional to
the product of the likelihood and the prior.

O In probability terms, the posterior = likelihood X prior, divided by the observed evidence, in this case,
a single spacetime data point, x;, .

23

Bayesian Inference Representation

U Spacekime analytics based on a single spacetime observation x; can be thought of as a type of Bayesian prior-
predictive or posterior-predictive distribution estimation problem
o Prior predictive distribution of a new data point x; , marginalized over the prior —i.e., the sampling

distribution p(xj0|y) weight-averaged by the pure prior distribution):
p(x,]0") = fv(xfoly) x _plyleH dy.

prior distribution
o Posterior predictive distribution of a new data point x; , marginalized over the posterior; i.e., the sampling

distribution p(x;,|y) weight-averaged by the posterior distribution:

POl 0") = [ Pl ) _pOlx,9) dy.

posterior distribution

U The difference between these two predictive distributions is that
o The posterior predictive distribution is updated by the observation X = {xio} and the hyperparameter, ¢
(phase aggregator),
o The prior predictive distribution only relies on the values of the hyperparameters that appear in the prior
distribution

24
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Bayesian Inference Simulation

4 Simulation example using 2 random samples drawn from mixture distributions
each of ny = ng = 10K observations
1) {XA,i}?fl, where X,; = 0.3U; + 0.7V}, U; ~ N(0,1) and V; ~ N(5,3), and
2) {XB,i}?=B11 where XB,i = O4Pl + 0'6Qi1 Pi ~ N(ZO,ZO) and Qi ~ N(].OO,SO)
O The intensities of cohorts A and B are independent and follow different mixture distributions. We'll
split the first cohort (A) into training (C) and testing (D) subgroups, and then

1) Transform all four cohorts into Fourier k-space,

2) lteratively randomly sample single observations from the (training) cohort C,

3) Reconstruct the data into spacetime using a single kime-magnitude value and alternative
kime-phase estimates derived from cohorts B, C, and D, and

4) Compute the classical spacetime-derived population characteristics of cohort A and compare
them to their spacekime counterparts obtained using a single C kime-magnitude paired with B,
C, or D kime-phases.

25

Bayesian Inference Simulation

Summary statistics for the original process (cohort A) and the corresponding values of their
counterparts computed using the spacekime reconstructed signals based on kime-phases of cohorts
B, C, and D. The estimates for the latter three cohorts correspond to reconstructions using a single
spacetime observation (i.e., single kime-magnitude) and alternative kime-phase priors (in this case,
kime-phases derived from cohorts B, C, and D).

_ Spacekime Reconstructions (single kime-magnitude)
(A) (B) (C, training) (D, testing)
Original Phase=Diff. Process Phase=True Phase=Independent
o T -2.38798 -3.798440 -2.98116 -2.69808
2 B -0.89359 -0.636799 -0.76765 -0.76453
Soos RN Median [EONEESNE 0.009279 -0.05982 -0.08329
BT 0.00000 0.000000 0.00000 0.00000
000 —= — 0.75772 0.645119 0.72795 0.69889
0 ale PN 3.61346 3.986702 3.64800 3.22987
PEETES 0348269 0.001021943 0.2372526 0.31398
PN -0.68176 0.2149918 -0.4452207 -0.3270084
[ L |
L

26
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Bayesian Inference Simulation

Spacekime signal reconstruction usin
and

The correlation between the original data (A) and its e
reconstruction using a single kime magnitude and the
correct kime-phases (C) is p(4, C) = 0.89.

This strong correlation suggests that a substantial part | -
of the A process energy can be recovered using only a
single observation. In this case, to reconstruct the
signal back into spacetime and compute the
corresponding correlation, we used a single kime-
magnitude (sample-size=1) and process C kime-
phases.

27

Bayesian Inference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data analytic problem
using a simulated bimodal experiment:
X4 =0.3U+ 0.7V, where U ~ N(0,1) and V ~ N(5,3)

Specifically, we will illustrate the Bayesian inference using repeated single spacetime observations
from cohort 4, X = {xiu}, and varying kime-phase priors (¢ = phase aggregator) obtained from cohorts
B, C, or D, using different posterior predictive distributions.

Relations between the empirical data distribution (dark blue) and samples from the posterior
predictive distribution, representing Bayesian simulated spacekime reconstructions (light-blue). The
derived Bayesian estimates do not perfectly match the empirical distribution of the simulated data, yet
there is clearly information encoding that is captured by the spacekime data reconstructions.

This signal compression can be exploited by subsequent model-based or model-free data analytic
strategies for retrospective prediction, prospective forecasting, ML classification, Al derived clustering,
and other spacekime inference methods.

28
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Bayesian Inference Simulation

Bayesian
simulated
spacekime
reconstructions
Samples from i
Distributions  the posterior
predictive
distribution : . Bivariate test statistic
J\/\ “  (mean & standard deviation)
Test statistic Test statistic
(maximum) (inter-quartile range, IQR)

Empirical data distribution (dark blue) & samples from the posterior predictive distribution Bayesian spacekime
reconstructions (light-blue).

29
g Spacekime Analytics (Time Complexity en- &2
Inferential Uncertainty) dcacon
TClU/Spaceklme Ana|VtICS Tutorlal . ‘ gzg TCIU Protocol for Predictive Spacekime Analytics using Longitudinal
pacekin SOCR Team
Basic TCIU Protocol for Predictive .
Spacekime Analytics using ey e s e
Longitudinal Data
1 Preliminary setup
.
2 Longitudinal Data Import
https://www.socr.umich.edu/TCIU/HTMLs/Chapter6 TCIU Basic SpacekimePredictiveAnalytics.html
30
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