

3

Historical Background: Kaluza-Klein Theory

- extension of the classical general relativity
theory to 5D. This included the metric, the
field equations, the equations of motion. the
 $v = M^4 \times S^1$ theory to 5D. This included the metric, the field equations, the equations of motion, the stress-energy tensor, and the cylinder condition. Physicist Oskar Klein (1926) quantum mechanical space and proposed that the fifth dimension was curled up and microscopic.
- \Box The topology of the 5D Kaluza-Klein Minkowski spacetime and S^1 is a circle (nontraversable).

5

AI & Spacekime Analytics

Rationale for Time \Rightarrow Kime Extension

Time (\mathbb{R}^+) is a subgroup of the multiplicative Reals group naturally extends time

Time is ordered but kime is not!

Kime (ℂ) represents the smallest natural extension of time, as a complete filed that agrees with time

Physics –

Problem of time … (DOI 10.1007/978-3-319-58848-3) **ℝ** and ℂ Hilbert-space quantum theories make different predictions (DOI: 10.1038/s41586-021-04160-4)

modeling of $\mathbb C$ kimesurfaces, novel analytics

Wesson (2004, 2010) Dinov & Velev (2021) Wang et al. (2022) Zhang et al. (2023) Dinov & Shen (2024)

Uncertainty in 5D Spacekime $\int_{\mu=0}^{3} dp^{\mu} dx_{\mu} = L \left(\frac{dl}{l-l_0} \right)^2 = \frac{h}{mc} \left(\frac{dl}{l-l_0} \right)^2 \sim h$ derived from 5D Einstein deterministic field equ's \Rightarrow uncertainty principle in 4D Minkowski spacetime <u>sol component</u> of the spaceterive deterministic field equ's $f_1^* = -\frac{1}{2}u^* \sum_{n=1}^3 \sum_{n=1}^3 \left(\frac{\partial \omega_n}{n}\right)^n \frac{d}{dx}$

3 spacetime, geodesic motion is perturbed by an extra $\frac{\sin \theta_n}{\sin \theta_n}$ of $f_1^* = f_1^* + f_1^*$, wher In sp spacetime, $\frac{d^2\pi^2}{dx^2}$ is $\frac{d^2\pi}{dx^2}$ is $\frac{d^2\pi}{dx^2}$ is $\frac{d^2\pi}{dx^2} = \frac{d^2\pi}{dx^2}$. The spacetime of the 4 velocity u_{μ} , is milat to other conventional forces, and $f_{\mu}^* u_{\mu} = 0$
 $> f_{\mu}^*$ in the system, which appears as Heisenberg's uncertainty. In Bioinfo/Biostatistics, Data Science, ML/AI & longitudinal analysis, this extra DoF represents process stochasticity – random sampling from an underlying probability distribution **Spaceling the 4D** spacetime formulation of the 4D spacetime observation of the Heisenberg's principle also support $dx_i = L\left(\frac{d}{1-t_0}\right)^2 = \frac{1}{m} \left(\frac{d}{1-t_0}\right)^2 - h$

derived from 5D Einstein deterministic field equise \Rightarrow Broglie-Bohm theory, which provides an explicit deterministic model of a system configuration and its corresponding wavefunction Uncertainty in 5D Spacekime
 \Box Assuming $m = 1$, $c = 1$, near the foliation leaf membrane hypersurface, we have
 $\langle dp | dx \rangle = \sum_{a=0}^{\infty} dp^{\mu} dx_{M} = I. \left(\frac{H}{(H_{\rm e})}^{2} = \frac{h}{mc} \left(\frac{H}{(H_{\rm e})}\right)^{2} \sim h\right)$

derived from 5D Ein **Uncertainty in 5D Spacekime**
 \square Assuming $m = 1, c = 1$, near the foliation leaf membrane hypersurface, we have
 \det derived from 5D Einstein deterministic field equ's \Rightarrow $\lim_{m \to \infty} \left(\frac{dl}{c+h}\right)^2 = \frac{n}{m} \left(\frac{dl}{c+h}\right)^2$ mechanics predictions, has to be non-local. This implies the existence of instantaneous, faster than the speed of light, interactions between particles that are significantly separated in 3D space (non-local relations).

Wang et al., 2022 | Dinov & Velev (2021)

(Many) Spacekime Open Math Problems

Ergodicity

Let's look at particle velocities in the 4D Minkowski spacetime (X) , a measure space where gas particles move spatially and evolve longitudinally in time. Let $\mu = \mu_x$ be a measure on X, $f(x, t) \in L^1(X, \mu)$ be an integrable function (e.g., velocity of

blems

U. (3/23/2024

U. (3/4) be an integrable function (e.g., <u>velocity</u> of (X, μ) be an integrable function (e.g., <u>velocity</u> of

tion $x \in \mathbb{R}^3$ and time $t \in \mathbb{R}^+$.

e average of f (e.g., velocity) over al **5/23/2024**
 (Many) Spacekime Open Math Problems

and ity

Let's look at particle velocities in the 4D Minkowski spacetime (X), a measure-pasce where gas particles move spatially and

evolve longitudinally in time. Let **S/23/2024**
 And theorem argues Containst System CODENTS

Let's look at particle velocities in the 4D Minkowski spacetime (X) , a measure space where gas particles move spatially and

evolve longitudinally in time. Let the gas system at a fixed time, $\bar{f} = \mathbb{E}_t(f) = \int_{\mathbb{R}^3} f(x, t) d\mu_x$, will be equal to the average f of just one particle (x) over the **5/23/2024**
 EXECUTE SET AVERT CONDUMERT SET AVERTUATE:

Ski spacetime (X) , a measure space where gas particles move spatially and

reasure on X , $f(x, t) \in L^1(X, \mu)$ be an integrable function (e.g., <u>velocity</u> of

g tr entire time span, **S/23/2**
 S/23/2
 The 4D Minkowski spacetime (*X*), a measure space where gas particles move spatially and

t $\mu = \mu_x$ be a measure on *X*, $f(x,t) \in E^1(Z, t)$ is an integrable function (e.g., <u>velocity</u> of

reasure-prese **(Many)** Spacekime Open Math Problems

undicity

Let's look at particle velocities in the 4D Minkowski spacetime (*X*), a measure space where gas particles move spatially and

evolve longitudinally in time. Let $\mu = \mu_x$ **ath Problems**
 $\begin{array}{l}\n\text{m} = \langle X \rangle, \text{ a measure space where gas particles move spatially and}\n\end{array}$
 $\begin{array}{l}\n\text{m} = \langle X, E \rangle \in L^1(X, \mu) \text{ be an integrable function (e.g., velocity of }\n\end{array}$
 $\begin{array}{l}\n\text{m} = \langle E \rangle^2, \text{ and } E \in \mathbb{R}^4.\n\end{array}$
 $\begin{array}{l}\n\text{m} = \langle E \rangle, \text{ and } E \in \mathbb{R}^4.\n\end{array}$
 $\begin{array}{l}\n$

$$
\tilde{f} \equiv \mathbb{E}_x(f) = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{m=0}^n f(T^m x) \right), \text{ i.e., (show) } \bar{f} \equiv \tilde{f}.
$$

The spatial probability measure is denoted by μ_x and the transformation $T^m x$ represents the dynamics (time evolution) of the particle starting with an initial spatial location $T^o x = x$.

$$
\overline{f} \equiv \mathbb{E}_{\kappa}(f) = \frac{1}{\mu_{x}(X)} \int f\left(x, t, \phi\right) d\mu_{x} \stackrel{?}{=} \underbrace{\lim_{t \to \infty} \left(\frac{1}{t} \sum_{m=0}^{t} \left(\int_{-\pi}^{+\pi} f(T^{m}x, t, \phi) d\phi\right)\right)}_{\text{kime averaging}} = \mathbb{E}_{x}(f) \equiv \tilde{f}
$$

15

Mathematical-Physics \Rightarrow Bio-Data Science & AI

18

Bayesian Inference Simulation

The correlation between the original data (A) and its

of the A process energy can be recovered using only a single observation. In this case, to reconstruct the signal back into spacetime and compute the corresponding correlation, we used a single kimemagnitude (sample-size=1) and process C kimephases.

27

Bayesian Inference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data analytic problem using a simulated bimodal experiment:

Specifically, we will illustrate the Bayesian inference using repeated single spacetime observations B, C , or D , using different posterior predictive distributions.

magnitude (sample-size=1) and process C kime-
phases.
 Ky
 Example 2018 Interference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data analytic pro-

Let's demonstrate the Bay size=1) and process C kime-

argent memories C kime-

ayesian inference corresponding to this spacekime data analytic problem

alal experiment:
 $X_A = 0.3U + 0.7V$, where $U \sim N(0,1)$ and $V \sim N(5,3)$

trate the Bayesian Relations between the empirical data distribution (dark blue) and samples from the posterior predictive distribution, representing Bayesian simulated spacekime reconstructions (light-blue). The derived Bayesian estimates do not perfectly match the empirical distribution of the simulated data, yet there is clearly information encoding that is captured by the spacekime data reconstructions. **Bayesian Inference Simulation**
Let's demonstrate the Bayesian inference corresponding to this spacekime data analytic problem
using a simulated bimodal experiment:
 $X_A = 0.37t + 0.7t$, where $U \sim N(0,1)$ and $V \sim N(5,3)$
Spe

strategies for retrospective prediction, prospective forecasting, ML classification, AI derived clustering, and other spacekime inference methods.

31