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Complex-time Representation of Repeated Measurement 
Longitudinal Data & Space-kime Analytics

Ivo D. Dinov
https://SOCR.umich.edu

Outline
 Data Science ≡ need-based information compression & expansion

 Complex-time (kime) & rationale

 Kime-phase, random sampling & Heisenberg’s Uncertainty

 Solutions of ultrahyperbolic wave equations

 Open spacekime problems

 Data science applications

 Bayesian formulation of spacekime inference

 Resources, live demo links & prospective DS R&D, education & practice

 Part 2: Hands-on Spacekime Analytics Tutorial (Demos)
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Duality of Evidence-based Scientific Discovery
experimental  theoretical  computational  data sciences

Synthesis
Compact Models  (simulated, actionable info)

Analysis
Observables/Data  Compact Models

Mapping
Examples

(S.1.1) Inverse linear transform, 𝐿ିଵ: 𝑊 → 𝑉,  e.g., 

𝐿ିଵ =
cos 𝜃 sin 𝜃

−sin 𝜃 cos 𝜃
: ℝଶ

௧௧
ℝଶ, 𝐿𝐿ିଵ ≡ 𝕀

(S.1.2) Inverse Fourier (IFT): 𝑓 𝑥 = ∫ 𝑓መ 𝜔 𝑒ଶగఠ௫𝑑𝜔
ஶ

ିஶ

(A.1.1) Linear transform, 𝐿:  𝑉 → 𝑊,  e.g., 2D rigid body

𝐿 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

: ℝଶ
௧௧

ℝଶ

(A.1.2) Fourier transform: 𝑓መ 𝜔 = ∫ 𝑓 𝑥 𝑒ିଶగఠ௫𝑑𝑥
ஶ

ିஶ

1. Lossless
Math 
Transforms

(S.2.1) DNA Unpacking
The process of unfolding the DNA from the chromosome to 
support the processes of gene expression, DNA replication, 
and DNA repair

(A.2.1) DNA Packing in Chromatin Fiber
Chromosomes contain enormously long linear DNA 
molecules associated with proteins that fold and pack the 
fine DNA double helix into a tight compact structure

2. DNA

(S.3.1) Information Inflation, Simulation & Generation, e.g., 
forecasting, regression, interpolation, extrapolation

(predict & classify new data):  𝐼𝑛𝑝𝑢𝑡  
ௗ

  𝑂𝑢𝑡𝑝𝑢𝑡

(A.3.1) Info Compression, 
e.g., linear models
𝑌 =  4582.70 +  212.29 𝑋

𝐷𝑎𝑡𝑎  
௦௦௨௧௦

  𝑀𝑜𝑑𝑒𝑙

3. Lossy
Data/Stats 
Science

(S.4.1) Generative Artificial 
Intelligence Modeling (GAIM)

𝐻𝑢𝑚𝑎𝑛 𝑃𝑟𝑜𝑚𝑝𝑡  
ீூெ

  𝑅𝑒𝑠𝑢𝑙𝑡

(A.4.1) Building, Fitting & Training
large foundational, generative
& deep network AI models 

𝐷𝑎𝑡𝑎  
௨ା௦௧

  𝐺𝐴𝐼𝑀

4. Artificial & 
Augmented 
Intelligence

Complex-Time (Kime)

 At a given spatial location, 𝒙, complex time (kime) is defined 
by 𝜅 = 𝑟𝑒ఝ ∈ ℂ, where:
 the magnitude represents the longitudinal events order 

(𝑟 > 0) and characterizes the longitudinal displacement in 
time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, 
event direction, or random sampling index

 There are multiple alternative parametrizations of kime in the 
complex plane 

 Space-kime manifold is ℝଷ × ℂ:  
 (𝒙, 𝑘ଵ) and (𝒙, 𝑘ସ) have the same spacetime 

representation, but different spacekime coordinates, 
 (𝒙, 𝑘ଵ) and (𝒚, 𝑘ଵ) share the same kime, but represent 

different spatial locations,
 (𝒙, 𝑘ଶ) and (𝒙, 𝑘ଷ) have the same spatial-locations and 

kime-directions, but appear sequentially in order, 𝑟ଶ < 𝑟ଵ.
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Historical Background: Kaluza-Klein Theory

 Theodor Kaluza (1921) developed a math 
extension of the classical general relativity 
theory to 5D. This included the metric, the 
field equations, the equations of motion, the 
stress-energy tensor, and the cylinder 
condition. Physicist Oskar Klein (1926) 
interpreted Kaluza's 3D+2D theory in 
quantum mechanical space and proposed 
that the fifth dimension was curled up and 
microscopic.

 The topology of the 5D Kaluza-Klein 
spacetime is 𝐾ଶ ≅ 𝑀ସ × 𝑆ଵ, where 𝑀ସ is a 4D 
Minkowski spacetime and 𝑆ଵ is a circle (non-
traversable).

Rationale for Time ⟹ Kime Extension
Math – 𝑇𝑖𝑚𝑒 is a special case of kime, 𝜅 = 𝜅 𝑒ఝ where 𝜑 = 0

Time (ℝା) is a subgroup of the multiplicative Reals group
Whereas kime (ℂ) is an algebraically closed prime field that 
naturally extends time
Time is ordered but kime is not! 
Kime (ℂ) represents the smallest natural extension of time, as a 
complete filed that agrees with time

Physics –
Problem of time … (DOI 10.1007/978-3-319-58848-3)
ℝ and ℂ Hilbert-space quantum theories make different

predictions (DOI: 10.1038/s41586-021-04160-4)

Bio AI/Data Science – Random IID sampling, Bayesian reps, tensor 
modeling of ℂ kimesurfaces, novel analytics

AI & Spacekime Analytics

Wesson (2004, 2010) 
Dinov & Velev (2021) 
Wang et al. (2022) 
Zhang et al. (2023) 
Dinov & Shen (2024)
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Uncertainty in 5D Spacekime

In 5D space-time, Ω =




ଶ
is the conformal factor, and 𝐿 is a constant length defined in terms of the cosmological constant 

𝛬 = −𝜖
ଷ

మ. In the metric signature (+, −, −, −), 
𝛬＞0 for a spacelike extra coordinate, and Λ＜0 for a time-like extra 5th coordinate, 𝑥ఓ is the (𝐷 − 1) spacetime location, 

and 𝑙 is the extra kime dimension. 
The canonical spacekime metric is: 

𝑑𝑆ଶ =
మ

మ
∑ ∑ 𝑔ఈఉ 𝑥ఓ, 𝑙 𝑑𝑥ఈ𝑑𝑥ఉିଶ


ିଶ
 + 𝜖𝑑𝑙ଶ (5D Spacekime line element and metric)

The 4D components of the spacekime equations of motion can be written explicitly in terms of the fifth force 𝑓ఓ measured in 
units of inertia mass, i.e., assuming 𝑚 = 1:

𝑑𝑢ఓ

𝑑𝑠
+   Γఉఊ

ఓ
 𝑢ఉ 𝑢ఊ

ଷ



ଷ



= 𝑓ఓ ,  𝑓ఓ ≡   −𝑔ఓఈ +
1

2
𝑢ఓ𝑢ఈ 

𝑑𝑙

𝑑𝑠
 
𝑑𝑥ఉ

𝑑𝑠
 
𝜕𝑔ఈఉ

𝜕𝑙

ଷ

ఉୀ

ଷ

ఈୀ

 

The 5D component of the spacekime equation of motion is:
ௗమ

ௗ௦మ −
ଶ



ௗ

ௗ௦

ଶ
−



మ =
ଵ

ଶ

మ

మ +
ௗ

ௗ௦

ଶ
∑ ∑ 𝑢ఈ𝑢ఉ డഀഁ

డ

ଷ
ఉୀ

ଷ
ఈୀ   &  𝑓∥

ఓ
= −

ଵ

ଶ
𝑢ఓ ∑ ∑

డഀഁ

డ
𝑢ఈ𝑢ఉ ௗ

ௗ௦
 ଷ

ఉୀ
ଷ
ఈୀ

In 5D spacekime, geodesic motion is perturbed by an extra 5th force 𝑓ఓ = 𝑓
ఓ

+ 𝑓∥
ఓ, where 

o 𝑓
ఓ is normal to the 4-velocity 𝑢ఓ, similar to other conventional forces, and 𝑓ఓ

 𝑢ఓ = 0

o 𝑓∥
ఓ is parallel to the 4-velocity 𝑢ఓ, has no analog in 4D spacetime, and 𝑓∥

ఓ
𝑢ఓ ≠ 0

Wesson (2004, 2010)     |    Wesson & Overduin (2018)    |      Dinov & Velev (2021)

Uncertainty in 5D Spacekime

Assuming 𝑚 = 1, 𝑐 = 1, near the foliation leaf membrane hypersurface, we have

𝑑𝑝  𝑑𝑥⟩ = ∑ 𝑑𝑝ఓ 𝑑𝑥ఓ
ଷ
ఓୀ = 𝐿

ௗ

ିబ

ଶ
=



 

ௗ

ିబ

ଶ
∼ ℎ 

derived from 5D Einstein deterministic field equ’s ⟹ uncertainty principle in 4D Minkowski spacetime
 In spacetime, Heisenberg’s uncertainty is due to lack of sufficient information about the 2nd kime dimension, 𝑙. 
 In Minkowski 4D spacetime, the lack of kime-phase information naturally leaves one degree of freedom (DoF)  

in the system, which appears as Heisenberg’s uncertainty.
 In Bioinfo/Biostatistics, Data Science, ML/AI & longitudinal analysis, this extra DoF represents 

process stochasticity – random sampling from an underlying probability distribution
 Spacekime formulation of the 4D spacetime observation of the Heisenberg’s principle also supports the de 

Broglie-Bohm theory, which provides an explicit deterministic model of a system configuration and its 
corresponding wavefunction 

 4D probabilistic spacetime is a spacekime embedding with an added degrees of freedom
 Bell's theorem suggests that any deterministic hidden-variable theory, which is consistent with quantum 

mechanics predictions, has to be non-local. This implies the existence of instantaneous, faster than the speed 
of light, interactions between particles that are significantly separated in 3D space (non-local relations).

Wesson (2004, 2010)     |    Bell (1964)    |      Dinov & Velev (2021)
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Ultrahyperbolic Wave Equation – Cauchy Initial Data

 Nonlocal constraints yield the existence, uniqueness & stability of local and global solutions to the 
ultrahyperbolic wave equation under Cauchy initial data …

Craig & Weinstein (2008) |    Wang et al. (2022)     |    Dinov & Velev (2021)

 𝜕௫
ଶ 𝑢

ௗೞ

ୀଵ

≡  Δ𝒙𝑢 𝒙, 𝜿   

ୱ୮ୟ୲୧ୟ୪ ୟ୮୪ୟୡ୧ୟ୬

=   Δ𝜿𝑢 𝒙, 𝜿  ≡  𝜕
ଶ 𝑢

ௗ

ୀଵ

୲ୣ୫୮୭୰ୟ୪ ୟ୮୪ୟୡ୧ୟ୬

 , ቮ

𝑢 = 𝑢     𝒙   ท
𝒙∈ೞ

, 0, 𝜿ିଵ

𝜿∈

= 𝑓 𝒙, 𝜿ିଵ

𝑢ଵ = 𝜕భ
𝑢 𝒙, 0, 𝜿ିଵ = 𝑔 𝒙, 𝜿ିଵ  

 

୧୬୧୲୧ୟ୪ ୡ୭୬ୢ୧୲୧୭୬ୱ (େୟ୳ୡ୦୷ ୈୟ୲ୟ)

where 𝒙 = 𝑥ଵ, 𝑥ଶ, … , 𝑥ௗೞ
∈ ℝௗೞ and 𝜿 = 𝜅ଵ, 𝜅ଶ, … , 𝜅ௗ

∈ ℝௗ are the Cartesian coordinates in the 𝑑௦ space and 𝑑௧ time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints 𝝃 ≥ 𝜼ିଵ :

𝑢ො 𝝃, 𝜅ଵ, 𝜼ିଵ

𝜼

= cos 2𝜋 𝜅ଵ 𝝃 ଶ − 𝜼ିଵ
ଶ 𝑢ො 𝝃, 𝜼ିଵ

భ

+ sin 2𝜋 𝜅ଵ 𝝃 ଶ − 𝜼ିଵ
ଶ

𝑢ොଵ 𝝃, 𝜼ିଵ

2𝜋 𝝃 ଶ − 𝜼ିଵ
ଶ

మ

  ,

where  ℱ
𝑢

𝑢ଵ
=

𝑢ො

𝑢ොଵ
=

𝑢ො 𝝃, 𝜼ିଵ

𝑢ොଵ 𝝃, 𝜼ିଵ
=

𝑢ො 𝝃, 𝜼ିଵ

𝜕భ
𝑢ො 𝝃, 𝜼ିଵ

.

𝑢 𝒙, 𝜅ଵ, 𝜿ିଵ

𝜿

= ℱିଵ 𝑢ො 𝒙, 𝜿 = න 𝑢ො 𝝃, 𝜅ଵ, 𝜼ିଵ × 𝑒ଶగ 𝒙,𝝃 × 𝑒ଶగ 𝜿షభ,𝜼షభ 𝑑𝝃 𝑑𝜼ିଵ

ೞ×షభ

 .

Ultrahyperbolic Wave Equation – Cauchy Initial Data

Math Generalizations:
Derived other spacekime concepts: law of addition of 
velocities, energy-momentum conservation law, 
stability conditions for particles moving in spacekime, 
conditions for nonzero rest particle mass, causal 
structure of spacekime, and solutions of the 
ultrahyperbolic wave equation under Cauchy initial 
data …

Wang et al., 2022     |    Dinov & Velev (2021)
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Longitudinal Bio Data Kime-Transforms PDEs AI

Wang et al., 2022     |    Dinov & Velev (2021)

Random Sampling & Kime-Phase Paradigm
Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008)

https://wiki.socr.umich.edu/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_Kime_Phases_Circular.html

Dinov & Velev (2021)
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(Many) Spacekime Open Math Problems
Ergodicity

Let’s look at particle velocities in the 4D Minkowski spacetime (𝑋), a measure space where gas particles move spatially and 
evolve longitudinally in time. Let 𝜇 = 𝜇𝒙 be a measure on 𝑋,  𝑓 𝒙, 𝑡 ∈ 𝐿ଵ(𝑋, 𝜇) be an integrable function (e.g., velocity of 
a particle), and 𝑇: 𝑋 → 𝑋 be a measure-preserving transformation at position 𝒙 ∈ ℝଷ and time 𝑡 ∈ ℝା. 

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of 𝑓 (e.g., velocity) over all particles in 

the gas system at a fixed time, 𝑓̅ = 𝔼௧ 𝑓 = ∫ 𝑓 𝒙, 𝑡 𝑑𝜇𝒙ℝయ , will be equal to the average 𝑓 of just one particle (𝒙) over the 
entire time span,

𝑓ሚ ≡ 𝔼𝒙 𝑓 = lim
⟶ஶ

ଵ


∑ 𝑓(𝑇𝒙

ୀ ) ,  i.e., (show)  𝑓̅ ≡ 𝑓ሚ. 

The spatial probability measure is denoted by 𝜇𝒙 and the transformation 𝑇𝒙 represents the dynamics (time evolution) 
of the particle starting with an initial spatial location 𝑇𝒙 = 𝒙. 

Investigate the ergodic properties of various transformations in the 5D spacekime: 

𝑓̅ ≡ 𝔼 𝑓 =
1

𝜇𝒙(𝑋)
න 𝑓 𝒙, 𝑡, 𝜙ต



𝑑𝜇𝒙

ୱ୮ୟୡୣ ୟ୴ୣ୰ୟ୧୬

   = ฏ
?

 lim
௧⟶ஶ

1

𝑡
 න 𝑓 𝑇𝒙, 𝑡, 𝜙 𝑑Φ

ାగ

ିగ

௧

ୀ
= 𝔼𝒙 𝑓 ≡ 𝑓ሚ

୩୧୫ୣ ୟ୴ୣ୰ୟ୧୬

Dinov & Velev (2021)

Mathematical-Physics Bio-Data Science & AI
Bio-Data SciencesPhysics

An object is something that exists by itself, actually or 
potentially, concretely or abstractly, physically or incorporeal 
(e.g., person, subject, etc.)

A particle is a small localized object that permits 
observations and characterization of its physical or 
chemical properties

A feature is a dynamic variable or an attribute about an object 
that can be measured

An observable a dynamic variable about particles that 
can be measured

Datum is an observed quantitative or qualitative value, an 
instantiation, of a feature

Particle state is an observable particle characteristic 
(e.g., position, momentum)

Problem, aka Data System, is a collection of independent 
objects and features, without necessarily being associated with 
a priori hypotheses

Particle system is a collection of independent particles 
and observable characteristics, in a closed system

Inference-functionWave-function
Data transformations (e.g., wrangling, log-transform)Reference-Frame transforms (e.g., Lorentz)
Dataset (data) is an observed instance of a set of datum 
elements about the problem system, 𝑶 = {𝑿, 𝒀}

State of a system is an observed measurement of all 
particles ~ wavefunction

Computable data object is a very special representation of a 
dataset which allows direct application of computational 
processing, modeling, analytics, or inference based on the 
observed dataset

A particle system is computable if (1) the entire 
system is logical, consistent, complete and (2) the 
unknown internal states of the system don’t influence the 
computation (wavefunction, intervals, probabilities, etc.)

⋮⋮
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Mathematical-Physics Bio-Data Science & AI
Data SciencePhysics

Inference function - describing a solution to a specific data analytic system (a problem). Examples: 
 A linear (GLM) model represents a solution of a prediction inference problem, 𝒀 = 𝑿𝛽, where the 

inference function quantifies the effects of all independent features (𝑿) on the dependent outcome (𝒀), 
data: 𝑶 = {𝑿, 𝒀}:

𝝍 𝑶 = 𝝍 𝑿, 𝒀    ⇒   𝛽 = 𝛽𝑶𝑳𝑺 = 𝑿 𝑿 ି𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
ି𝟏

𝑿𝑻𝒀.

 A non-parametric, non-linear, alternative inference is SVM classification. If 𝝍𝒙 ∈ 𝑯, is the lifting 
function 𝝍: 𝑹𝜼 → 𝑹𝒅 (𝝍: 𝒙 ∈ 𝑹𝜼 → 𝑥 = 𝝍𝒙 ∈ 𝑯), where 𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 : 𝑶 × 𝑶 →
𝑹 transformes non-linear to linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊

∈

𝑯. The SVM prediction operator is the weighted sum of the kernel functions at 𝝍𝑶𝒊
, where 𝜷∗ is a 

solution to the SVM regularized optimization: 

The dual weight coefficients, 𝒑𝒊
∗, are multiplied by the label corresponding to each training instance, {𝑦()} .

Inference always depends on the (input) data; however, it does not have 1-1 and onto bijective 
correspondence with the data, since the inference function quantifies predictions probabilistically.

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐 −
𝟏

𝝂𝟐

𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕) = 𝟎

Complex Solution:
𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙ି𝒘𝒕)

represents a traveling 
wave,

where 𝒘


= 𝜈.

GLM/SVM: https://DSPA2.predictive.space |      Dinov, Springer (2018, 2023)

𝜓ை| 𝛽∗
ு

ௗ௧௦

= 𝑤்𝑥 + 𝑏 = ∑ 𝑝
∗ 𝜓ை|𝜓ை ு

 
ୀଵ + 𝑏,

min
௪∈ℝ, క∈ℝశ

𝑤 ଶ

௨௭ 

+ 𝐶 ∑ 𝜉

ୀଵ

ௗ௧௬

, 𝑦() 𝑤்𝑥() + 𝑏 ≥ 1 − 𝜉, 𝜉 ≥ 0

Spacetime Time-series Spacekime Kimesurfaces TLM

Zhang et al., 2022     |    Dinov & Velev (2021)
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Mapping Longitudinal Bio-Data (Time-series) Kime-Surfaces

Zhang et al., 2022     |    Dinov & Velev (2021)

(Analytic) Mapping Bio Time-series Kime-surfaces

Shen et al., 2024    |     Zhang et al., 2022     |    Dinov & Velev (2021)

Apply the ILT (ℒିଵ ) to reconstruct a time-series, 𝑓 𝑡 = ℒିଵ 𝐹 𝑡 :

𝑭 𝒛 = ℒ 𝑓 =   
1

𝑧 + 1
  

ிభ ௭ ୀℒ భ ௧ ୀష

+   
1

𝑧ଶ + 1
  

ிమ ௭ ୀℒ మ ௧ ୀୱ୧୬ ௧

×   
𝑧

𝑧ଶ + 1
  

ிయ ௭ ୀℒ య ௧ ୀୡ୭ୱ ௧

+   
1

𝑧ଶ  
ถ

ிర ௭ ୀℒ ర ௧ ୀ௧

  ,

𝒇 𝒕 = 𝓛ି𝟏 𝑭 = ℒିଵ 𝐹ଵ + 𝐹ଶ × 𝐹ଷ + 𝐹ସ) = ℒିଵ 𝐹ଵ + ℒିଵ 𝐹ଶ ∗ ℒିଵ 𝐹ଷ

ୡ୭୬୴୭୪୳୲୧୭୬

𝑡 + ℒିଵ 𝐹ସ =

ℒିଵ ℒ 𝑓ଵ 𝑡 + ℒିଵ ℒ 𝑓ଶ ∗ ℒିଵ ℒ 𝑓ଷ 𝑡 + ℒିଵ ℒ 𝑓ସ 𝑡  ,

𝒇 𝒕 = ℒିଵ 𝐹 𝑡 = 𝑓ଵ 𝑡 + 𝑓ଶ ∗ 𝑓ଷ 𝑡 + 𝑓ସ 𝑡 =  𝑒ି௧ + න sin 𝜏 × cos 𝑡 − 𝜏 𝑑𝜏
௧



+ 𝑡 = 𝒕 + 𝒆ି𝒕 +
𝒕𝐬𝐢𝐧 𝒕

𝟐
 .

𝑓 𝑡 = ℒିଵ ℒ 𝑓 (𝑡)
𝐹(𝑧) = ℒ 𝑓 ⋅ (𝑧)

Reg(𝐹)(𝑧) = Reg(ℒ 𝑓) (𝑧)

Inverse stereographic projection
Repeated Longitudinal

Data Sampling

19
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Example: Tensor-based Linear Modeling of fMRI
3-Step Analysis: registering the fMRI data into a brain atlas space, 
56 ROIs, tensor linear modeling, post-hoc FDR processing & 
selection of large clusters of significant voxels are identified within 
the important ROIs:

𝑌 =   𝑋, 𝐵   
୲ୣ୬ୱ୭୰ ୮୰୭ୢ୳ୡ୲

+  𝐸

The dimensions of the time-tensor 𝑌 are 160ฐ
୲୧୫ୣ

× 𝑎 × 𝑏 × 𝑐

ୖ୍ ୠିୠ୭

, where the tensor 
elements represent the response variable 𝑌[𝑡, 𝑥, 𝑦, 𝑧], i.e., fMRI intensity. 
For fMRI magnitude (real-valued signal), the design kime-tensor 𝑋
dimensions are:  

 10 ∗ 8 
୧୫ୣ(୧୫ୣ∗×ೃೌ)

× 𝑆𝑡𝑎𝑡𝑒
ୗ୲୧୫ ୴ୱ. ୖୣୱ୲ (ଶ)

×  4 ด
ୣୣୡ୲ୱ

×  1 ด
ℝ

 .

Step 1: ROI analysis

Step 3: 2D voxel 
analysis projections
(finger-tapping task 
modeling)

Voxel-based TLM/Analysis
Corrected (step 3, left) vs. Raw (step 2, right)

Step 2: Voxel analysis

Bayesian Inference Representation

 Suppose we have a single spacetime observation 𝑋 = 𝑥
∼ 𝑝 𝑥  𝛾) and 𝛾 ∼ 𝑝 𝛾  𝜑 = phase) is a 

process parameter (or vector) that we are trying to estimate. 

 Spacekime analytics aims to make appropriate inference about the process 𝑋.

 The sampling distribution, 𝑝 𝑥  𝛾), is the distribution of the observed data 𝑋 conditional on the 
parameter 𝛾 and the prior distribution of the parameter 𝛾 before the observing the data is 𝑝 𝛾  𝜑), 
where 𝜑 = phase aggregator.

 Assume that the hyperparameter (vector) 𝜑, which represents the kime-phase estimates for the 
process, can be estimated by 𝜑ො = 𝜑′.

 Such estimates may be obtained from an oracle (model distribution), approximated using similar 
datasets, acquired as phases from samples of analogous processes, derived via some phase-
aggregation strategy, or analytically computed (e.g., via Laplace transform). 

 Let the posterior distribution of the parameter 𝛾 given the observed data 𝑋 = 𝑥
be 𝑝 𝛾 𝑋, 𝜑ᇱ and 

the process parameter distribution of the kime-phase hyperparameter vector 𝜑 be 𝛾 ∼ 𝑝 𝛾  𝜑).
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Bayesian Inference Representation

We can formulate spacekime inference as a Bayesian parameter estimation problem:

   𝑝 𝛾 𝑋, 𝜑ᇱ   
୮୭ୱ୲ୣ୰୧୭୰ ୢ୧ୱ୲୰୧ୠ୳୲୧୭୬

 =  
𝑝 𝛾, 𝑋, 𝜑ᇱ

𝑝 𝑋, 𝜑ᇱ
=

𝑝 𝑋 𝛾, 𝜑ᇱ × 𝑝 𝛾, 𝜑ᇱ

𝑝 𝑋, 𝜑ᇱ
=

𝑝 𝑋 𝛾, 𝜑ᇱ × 𝑝 𝛾, 𝜑ᇱ

𝑝 𝑋 𝜑ᇱ × 𝑝 𝜑ᇱ
=

𝑝 𝑋 𝛾, 𝜑ᇱ

𝑝 𝑋 𝜑ᇱ  
×

𝑝 𝛾, 𝜑ᇱ

𝑝 𝜑ᇱ
=

𝑝 𝑋 𝛾, 𝜑ᇱ × 𝑝 𝛾 𝜑ᇱ

  𝑝 𝑋 𝜑ᇱ  
୭ୠୱୣ୰୴ୣୢ ୣ୴୧ୢୣ୬ୡୣ

 ∝   𝑝 𝑋 𝛾, 𝜑ᇱ  
୪୧୩ୣ୪୧୦୭୭ୢ

×  𝑝 𝛾 𝜑ᇱ  
୮୰୧୭୰

 .

 In Bayesian terms, the posterior probability distribution of the unknown parameter 𝛾 is proportional to 
the product of the likelihood and the prior. 

 In probability terms, the posterior = likelihood × prior, divided by the observed evidence, in this case, 
a single spacetime data point, 𝑥

.

Bayesian Inference Representation
 Spacekime analytics based on a single spacetime observation 𝑥

can be thought of as a type of Bayesian prior-
predictive or posterior-predictive distribution estimation problem 
o Prior predictive distribution of a new data point 𝑥

, marginalized over the prior – i.e., the sampling 
distribution 𝑝 𝑥

𝛾 weight-averaged by the pure prior distribution):

𝑝 𝑥
𝜑ᇱ = න 𝑝 𝑥

𝛾 ×     𝑝 𝛾  𝜑ᇱ     
୮୰୧୭୰ ୢ୧ୱ୲୰୧ୠ୳୲୧୭୬

𝑑 𝛾  .

o Posterior predictive distribution of a new data point 𝑥
, marginalized over the posterior ; i.e., the sampling 

distribution 𝑝 𝑥
𝛾 weight-averaged by the posterior distribution:

𝑝 𝑥
𝑥

, 𝜑ᇱ = න 𝑝 𝑥
𝛾 ×     𝑝 𝛾 𝑥

, 𝜑ᇱ     

୮୭ୱ୲ୣ୰୧୭୰ ୢ୧ୱ୲୰୧ୠ୳୲୧୭୬

𝑑 𝛾  .

 The difference between these two predictive distributions is that 
o The posterior predictive distribution is updated by the observation 𝑋 = 𝑥

and the hyperparameter, 𝜑
(phase aggregator), 

o The prior predictive distribution only relies on the values of the hyperparameters that appear in the prior 
distribution
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Bayesian Inference Simulation
 Simulation example using 2 random samples drawn from mixture distributions 

each of 𝑛 = 𝑛 = 10K observations
1) {𝑋,}ୀଵ

ಲ , where 𝑋, = 0.3𝑈 + 0.7𝑉, 𝑈 ∼ 𝑁(0,1) and 𝑉 ∼ 𝑁(5,3), and 
2) {𝑋,}ୀଵ

ಳ , where 𝑋, = 0.4𝑃 + 0.6𝑄, 𝑃 ∼ 𝑁(20,20) and 𝑄 ∼ 𝑁(100,30).

 The intensities of cohorts 𝐴 and 𝐵 are independent and follow different mixture distributions. We’ll 
split the first cohort (𝐴) into training (𝐶) and testing (𝐷) subgroups, and then

1) Transform all four cohorts into Fourier k-space,
2) Iteratively randomly sample single observations from the (training) cohort 𝐶,
3) Reconstruct the data into spacetime using a single kime-magnitude value and alternative 

kime-phase estimates derived from cohorts 𝐵, 𝐶, and 𝐷, and
4) Compute the classical spacetime-derived population characteristics of cohort 𝐴 and compare 

them to their spacekime counterparts obtained using a single 𝐶 kime-magnitude paired with 𝐵, 
𝐶, or 𝐷 kime-phases.

Bayesian Inference Simulation

Spacekime Reconstructions (single kime-magnitude)Spacetime
(𝐷, testing) 

Phase=Independent
(𝐶, training) 
Phase=True

(𝐵) 
Phase=Diff. Process

(𝐀) 
Original

Summaries

-2.69808-2.98116-3.798440  -2.38798Min 
-0.76453-0.76765-0.636799  -0.893591st Quartile
-0.08329-0.059820.009279  0.03311Median 
0.000000.000000.000000  0.00000Mean
0.698890.727950.645119  0.757723rd Quartile  
3.229873.648003.9867023.61346Max
0.313980.23725260.0010219430.348269Skewness

-0.3270084-0.44522070.2149918-0.68176Kurtosis

Summary statistics for the original process (cohort 𝐴) and the corresponding values of their 
counterparts computed using the spacekime reconstructed signals based on kime-phases of cohorts 
𝐵, 𝐶, and 𝐷. The estimates for the latter three cohorts correspond to reconstructions using a single 
spacetime observation (i.e., single kime-magnitude) and alternative kime-phase priors (in this case, 
kime-phases derived from cohorts 𝐵, 𝐶, and 𝐷).
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Bayesian Inference Simulation

The correlation between the original data (𝐴) and its 
reconstruction using a single kime magnitude and the 
correct kime-phases (𝐶) is 𝜌 𝐴, 𝐶 = 0.89. 

This strong correlation suggests that a substantial part 
of the 𝐴 process energy can be recovered using only a 
single observation. In this case, to reconstruct the 
signal back into spacetime and compute the 
corresponding correlation, we used a single kime-
magnitude (sample-size=1) and process 𝐶 kime-
phases.

Bayesian Inference Simulation
Let’s demonstrate the Bayesian inference corresponding to this spacekime data analytic problem 
using a simulated bimodal experiment: 

𝑋 = 0.3𝑈 + 0.7V, where 𝑈 ∼ 𝑁(0,1) and 𝑉 ∼ 𝑁(5,3)

Specifically, we will illustrate the Bayesian inference using repeated single spacetime observations 
from cohort 𝐴, 𝑋 = 𝑥

, and varying kime-phase priors (𝜑 = phase aggregator) obtained from cohorts 
𝐵, 𝐶, or 𝐷, using different posterior predictive distributions.

Relations between the empirical data distribution (dark blue) and samples from the posterior 
predictive distribution, representing Bayesian simulated spacekime reconstructions (light-blue). The 
derived Bayesian estimates do not perfectly match the empirical distribution of the simulated data, yet 
there is clearly information encoding that is captured by the spacekime data reconstructions. 

This signal compression can be exploited by subsequent model-based or model-free data analytic 
strategies for retrospective prediction, prospective forecasting, ML classification, AI derived clustering, 
and other spacekime inference methods.
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Bayesian Inference Simulation 
Bayesian   
simulated 
spacekime
reconstructions

Samples from      
the posterior 

predictive
distribution 

Distributions

Bivariate test statistic
(mean & standard deviation)

Test statistic
(maximum)

Test statistic
(inter-quartile range, IQR)

Empirical data distribution (dark blue) & samples from the posterior predictive distribution Bayesian spacekime 
reconstructions (light-blue).

Part 2: Hands-on Spacekime Analytics Tutorial

TCIU/Spacekime Analytics Tutorial: 
Basic TCIU Protocol for Predictive
Spacekime Analytics using 
Longitudinal Data

https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_TCIU_Basic_SpacekimePredictiveAnalytics.html
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