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Outline

© Bayesian tensor regression

@ Bayesian tensor response regression

© Bayesian symmetric tensor response regression

@ Distributed computation with space-time data
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Why Tensor Regression? Application in Primary
Progressive Aphasia

Primary Progressive Aphasia is manifested in terms of language
loss and indicates early stage of Alzheimers.

(a) MRI scan (b) Atlas (c) GM

Tensor predictor: Structural MRI for 142 patients of language
loss.

scalar predictors: gender, age.
Response: Language score representing degree of language loss.
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Penalized Optimization:Unsatisfactory Predictive
Performance
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1(-) = convex penalty function, ( = tuning parameter

arg min ||y — X~|[> + ¢ 3°7_; ¥(7;) — Penalized Opt.
¥
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Penalized Optimization:Unsatisfactory Predictive
Performance
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@ LASSO (Tibshirani, 1996), Elastic Net (Zhou et al., 2005),
tons of other variants.
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Penalized Optimization:Unsatisfactory Predictive
Performance
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1(-) = convex penalty function, ( = tuning parameter

arg mﬁyin ly = X~I[* + ¢ X0, ¥(v;) — Penalized Opt.

@ LASSO (Tibshirani, 1996), Elastic Net (Zhou et al., 2005),
tons of other variants.
@ Unsatisfactory predictive uncertainty.
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Bayesian Inference

@ Start with a prior distribution of ~.
@ “Combine” data likelihood and prior distribution to obtain
posterior distribution of ~.

@ point estimation— mean of the posterior, uncertainty—
95% credible interval from the posterior.

e Markov Chain Monte Carlo (MCMC) and its variants exist to
empirically estimate the posterior distribution of ~.
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Bayesian High Dim. Reg.:Unsuitable in High Dimension

@ Bayesians choose sparsity-favoring priors on v € R” which will
set components of v to be 0.
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Bayesian High Dim. Reg.:Unsuitable in High Dimension

@ Bayesians choose sparsity-favoring priors on v € R” which will
set components of v to be 0.

Spike & Slab Prior (Computationally Inefficient)

vj ~ moo + (1 —m)g, gis a cont. density.

Bayesian Shrinkage Prior (Statistically

Inefficient)

p(B)
00 01 02 03 04 05

i~ N(O,CJT), C_.-_/ ~ ﬁa T ~ f2

Marginally, ; has a heavy tailed density
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Bayesian High Dim. Reg.:Unsuitable in High Dimension

@ Bayesians choose sparsity-favoring priors on v € R” which will
set components of v to be 0.

Spike & Slab Prior (Computationally Inefficient)

vj ~ moo + (1 —m)g, gis a cont. density.

Bayesian Shrinkage Prior (Statistically

Inefficient)

p(B)
00 01 02 03 04 05

i~ N(ngj’r)a C_/ ~ fla T ~ f2

N Marginally, ; has a heavy tailed density

e Important shrinkage priors, Bayesian Lasso (Park et al., 2008;
Hans, 2009), Horseshoe (Carvalho et al., 2009), Generalized
Double Pareto (Armagan et al., 2013).
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Bayesian High Dim. Reg.:Unsuitable in High Dimension

@ Bayesians choose sparsity-favoring priors on v € R” which will
set components of v to be 0.

Spike & Slab Prior (Computationally Inefficient)

vj ~ moo + (1 —m)g, gis a cont. density.

Serious Drawbacks of Penalization and Shrinkage

@ p = p1 X pp X p3, each p; = 64 typically, implies massive

dimensional regression with close to half a million predictors
= Infeasibility

n(B)

@ Misses out on wealth of information that the tensor valued
images carry.

@ Important shrinkage priors, Bayesian Lasso (Park et al., 2008;

Hans, 2009), Horseshoe (Carvalho et al., 2009), Generalized
Double Pareto (Armagan et al., 2013).
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Tensor Regression Model with PARAFAC Decomposition

Data Model

y = (X,B) + /v +¢,¢ ~N(0,0?)

rank-R PARAFAC decomposition of B for dimension reduction

—3 —3 —3
H"] —_— H": " R —
. ¥ v 5
= Ll L2y + R
B —_—

For D > 3, need a better notation = B = Ele B(lr) 0---0 ﬁg)

(r) € RPi, o denotes outer product between vectors.
J p
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Tensor Regression Model with PARAFAC Decomposition

Data Model

y = (X,B) + /v +¢,¢ ~N(0,0?)

rank-R PARAFAC decomposition of B for dimension reduction
Advantages

@ Number of parameters needed to model is RZJ-';I pj as

opposed to ]_[J-Dzl pj = Dimension Reduction.

@ Exploits neighborhood structure of X = potentially better
inference.

For D > 3, need a better notation = B = Ele B(lr) 0---0 ﬁg)

(r) € RPi, o denotes outer product between vectors.
J p
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Need for a Multiway Shrinkage Prior on B
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@ Protects from
overfitting due
to a higher
rank (R) than
needed.

o Estimate
tensor margins
with an
approximate
sparsity.



Multiway Shrinkage Prior for B (G. et al. 2017, JMLR)
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| Exchangable shrinkage acrossr}

BJ(.r) ~ N(O, diag(wjr 1, .-, Wjr p;)Tr), ¢r's rank specific parameters.
Shrinkage across ranks: (¢1, ..., or) ~ Dirichlet(a, ..., ), a > 0.
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Multiway Dirichlet Generalized Double Pareto Prior
(M-DGDP)
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Shrinkage within every rank

Wir k ~ Exp()‘fr/z)a )‘jr ~ Ga(a)\> b)\),’T ~ IG(aT7 bT)

Integrating out W,

/B}rk) | &r, 7 marginally follows GDP shrinkage prior. I
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_ General Theoretical Setip G
@ True Model

(f(y|B7) = N ((X, By),0?))

KL metric ball of radius € around the truth




General Theoretical Setup: G. et al., 2017, JMLR

@ True Model
(f(Y|B?1) =N (<X7 891)’02))

Class of tensor reg. models fitted to the data

KL metric ball of radius € around the truth

B ={Bn: 137 KL(f(yi|BY), f(yi|Bn)) < €} = Neighborhood

Posterior Consistency

N,(#5) — 0 under B as. asn— oc. (1)

[1, posterior distribution given y1, ...., y,.
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Posterior Consistency Results, G. et al. 2017, JMLR

The posterior is consistent under the following assumptions. \
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Posterior Consistency Results, G. et al. 2017, JMLR

The posterior is consistent under the following assumptions. \

B(,)7 = Zfzol ﬁ(l)f;) 0---0 ﬁ%(g follows rank-Ry decomposition,
R > Ry. (Structure on the true coefficients)
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Posterior Consistency Results, G. et al. 2017, JMLR

The posterior is consistent under the following assumptions. \

B(,)7 = Zfzol 5(1),(;) 0---0 ﬁ%(g follows rank-Ry decomposition,
R > Ry. (Structure on the true coefficients)

SUP/=1,...p;., |ﬁ?(nr),| <oo, forallj=1,...,D; r=1,...,Ro.

(Structure on the true coefficients)
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Posterior Consistency Results, G. et al. 2017, JMLR

The posterior is consistent under the following assumptions. \

B(,)7 = Zfzol 5(1),(;) 0---0 ﬁ%(g follows rank-Ry decomposition,
R > Ry. (Structure on the true coefficients)

SUP/=1,...p;., |ﬁ?(nr),| <oo, forallj=1,...,D; r=1,...,Ro.

(Structure on the true coefficients)

Ej';l pj.nlog(pj,n) = o(n). (Dimensions of tensor margins)
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Posterior Consistency Results, G. et al. 2017, JMLR

The posterior is consistent under the following assumptions. \

B(,)7 = Zfzol 5(1),(;) 0---0 ﬁ%(g follows rank-Ry decomposition,
R > Ry. (Structure on the true coefficients)

SUP/=1,...p;., |ﬁ?(nr),| <oo, forallj=1,...,D; r=1,...,Ro.

(Structure on the true coefficients)

j';l pj.nlog(pj,n) = o(n). (Dimensions of tensor margins)

More involved convergence results can be found in G. (2017),
JMVA.
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Motivation: Brain Activation Study

Stimulus function HRF BOLD signal

Block design R | “ 0‘
11 g ]

@ Y;is 64 x 64 x 64
dimensional tensor
response at time
t=1,...,T.

@ Xx; is a scalar
activation related
predictor at time
t=1,...,T.

@ Identify brain voxels activated by an external stimulus.
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Tensor Response Regression Model

Data Model

Y:=Bixit+ -+ BmnXm: + E¢

@ Y;:isa p; X -+ X pp dimensional tensor response,
X1,ts---» Xm,t are m predictors.
@ By,....B,, are p; X --- X pp dim. tensor coefficients.

@ vec(E;) ~ Stationary AR(1) process with the lag parameter ¢.
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Tensor Response Regression Model

Data Model

Y:=Bixit+ -+ BmnXm: + E¢

@ Y;:isa p; X -+ X pp dimensional tensor response,
X1,ts---» Xm,t are m predictors.
@ By,....B,, are p; X --- X pp dim. tensor coefficients.

@ vec(E;) ~ Stationary AR(1) process with the lag parameter ¢.

m
p1 B, 1| Xjt + m
j=1 h

P2

p1 Y: =

p2 p2

@ (k,I)-th entry of B; determines the effect of j-th predictor on
the (k, /)-th cell of the response tensor.
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Multiway Stick Breaking Prior for B; (Spencer et al.,
Psychometrika (2020); G. & Spencer, Bayesian Analysis
(2021))

|
l

7 = . 2

L % _ R, 8o ()
°Bj=>, 0B

Increasing Shrinkage across ranks r = 1,.»>

@ Shrinkage within every rank through generalized double pareto
shrinkage prior.

@ Shrinkage prior involves rank specific parameters ¢; ,,
r=1,..,R.
@ They assume a stick breaking construction

Gj1 = &1, 052 =&l — 1)y djr = [1EA — &),
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Theoretical Study: Bayesian Tensor Response Regression

B (tensor of dimensions m x p; X --- X pp): stacking tensor
coefficients By, ..., B, together.

/T ={B:||B — Bo||2 < €} , By = true value of B.

M(-) is the posterior distribution of B with T observations.

Notion of Posterior Consistency

MNr(«f) — 0, as., when T — oo.

Posterior consistency holds under the following conditions:

@ By, assumes rank Ry; PARAFAC decomposition with
R > max Ro,;.
J

@ mYL . palog(py) = o(T), slog(m[]5—1 pa) = o(T), where
s is the number of nonzero entries in By.

© Covariate matrix has bounded singular values.
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Motivation: Brain Connectomes with Phenotypes

e Data: Brain connectome network (Y;), creative achievement
(x;) for subjects.

o (k,I)-th entry of Y; represents “association” between kth and
Ith brain regions.

12345
l‘ﬂ‘a‘bcd
32 ‘o‘efg
g3 0 h i
4 0
5 o]

@ 68 Regions of interest
(ROI), 34 in each
hemisphere.

@ 12 Lobes, 6 in each
hemisphere.

Texas A & M Statistics



Motivation: Brain Connectomes with Phenotypes

e Data: Brain connectome network (Y;), creative achievement
(x;) for subjects.

o (k,I)-th entry of Y; represents “association” between kth and
Ith brain regions.

Nodes
12345
O‘a‘b c

lole f
0| h
0

d
g
i

BE
)

Nodes
VVHWN =

@ 68 Regions of interest
(ROI), 34 in each
<

Inferential Goal

Develop regression of Y; on x;, identify important network nodes
related to creativity.
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Bayesian Symmetric Tensor on Vector Regression (Guha &
G., Technometrics, 2021)

Data Model

Y;=Bixij+ -+ Bmxmi + Ej

@ Y isapx---x pdimensional symmetric tensor response,
X1j, -y Xmi are m predictors.

@ Bi,....,B, are p x --- x p dim. symmetric tensor coefficients.
e B; follows a symmetric rank-R PARAFAC decomposition

B =Y N8B o0,

o B = (5. . )Y €R? X € {01},

Texas A & M Statistics



Influential Node Identification

° uj = (Bﬁlk), vy }i))’ = 0 implies k-th node is unrelated to
the jth predictor.

@ Variable selection prior to identify important nodes,

. N(07 M), |f fj,kzl '
uj,k - { (507 |f gj,k = O ) g_l,k Ber(A)’

where dg is the Dirac-delta function at 0, M is a covariance
matrix of order R x R.

Near Optimal Estimation of Predictive Density (Guha and G.,

2021)
The predictive density of the proposed model can be estimated at
a rate close to n='/2 upto a log(n) factor.
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Inference on Significant Nodes

e Compute posterior probability of {u; = 0} empirically from
MCMC samples.

kth network node is related to the jth predictor if this
probability is less than 0.5.

L R
z 4
<A / xS s s 13 frontal, 6 temporal
oo 3 ’o N ROls are significant
(& W 5 O e gnifican
e among 34 significant
% o_&..: PR P ROIls. (More than half of
F AUSERON b‘, D8 (3 the identified ROIs).
2 &g ‘é . @ u.:. [ e
e [

o

@ We offer posterior probabilities of each node being related to
a predictor, which quantifies the statistical uncertainty.
@ Posterior prob. close to 0 or 1 means less uncertainty with the

decision.
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Functional Regression: Computational Infeasibility

Space-Time Varying Coefficient Model

y(si, tj) = x(si, ti)I. + z(si, t;)  y(sin ti) + e(si,ti)

@ p x 1 Fixed Effect
Omx1 Space-Time Varying Coefficients
O Non-Spatial Error following i.i.d. N(0, 72)

Some Observations

@ Only m of the p predictors have varying coefficients, m < p.

@ z(s;,t;) = 1 = spatio-temporal geo-statistical model.

o x(sj, tj) = z(sj, t;) = all predictor coefficients are space-time
varying.

Texas A & M Statistics



Spatio-Temporal Gaussian Process

{r(s;t) : (s,t) € (v(s1, 1), -, 7(n, tn)) ~
@Xy}NGP( ,Ce(,)) N(O,Ce)

for any finite set of location-time tuples (s1,t1), ..., (Sn, tn).

Cross Covariance Kernel Matrix

@ Cy(-,-) isthe m x m cross-covariance kernel matrix.

@ Cg isthe nm x nm covariance matrix with the (i, j)-th block

given by the m x m matrix Cg((sj, ti), (s}, tj)) -

Texas A & M Statistics



Modeling Cross Covariance:Popular Approaches

Constructive

Kernel
Convo-
lution

Latent
Dimension

Characterize
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Full Likelihood from Gaussian Process (GP) Model

y= (Y(517 tl)» --a)/(sna tn))/v (n x1 vector)
X = [x(s1,t1) : -+ x(sn, tn)]", (n X p matrix)
Z = Block — diag(z(s1,t1)',- - ,z(sn, tn)"), (n X nm matrix)

o Model: y~ N(XB,ZCoZ +721) .

o Estimating parameters 3,0, 7> from the likelihood

_log(det(ZCoZ' +7%1))  (y — XB)(ZCoZ' + 1) (y — XB)
2 2

Challenges

o Store ZCoZ' + 721
o Compute Chol(ZCpZ' + 721) = LL'.

n? floating point operations per MCMC iteration —Big-n problem
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Literature on Spatial /Spatio-Temporal Big Data

@ Low rank model (Wahba, 1990; Higdon, 2001; Kamman &
Wand, 2003; Paciorek, 2007; Lemos and Sanso, 2006;
Banerjee et al., 2008; Cressie & Johannesson, 2008; Finley et
al., 2009; Gramacy and Lee, 2008; Guhaniyogi et al., 2011
& 2013; Sang et al. 2012; Katzfuss, 2016).

e Multiscale approaches (Nychka, 2002; Johannesson et al.,
2007; Tzeng and Huang, 2015; Nychka et al., 2015; Katzfuss,
2016; Katzfuss & Guinness, 2021, Guhaniyogi & Sanso,
2017).

@ Spectral approximations and composite likelihoods (Fuentes,
2007; Eidvisk, 2016).

@ Sparsity: Covariance tapering (Kaufman et al., 2008; Du et
al., 2009; Sang et al., 2012; Guhaniyogi, 2017),INLA (Rue et
al., 2009; Lindgren et al., 2011), 1lagp (Gramacy and Apley,
2015), nearest neighbor processes (Stein et al., 2004; Stroud
et al., 2014; Datta et al., 2016).
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Divide-and-Conquer Inference with Big Data

o Split the data . = {(s1, t1), ..., (Sn, tn)}, % =

{y(sl, t1), ...,y(s,,, tn)}a X = {x(517 tl)? ...,X(Sn, t,-,)},
% ={z(s1,t1),...,2(sn, ty)} into k exhaustive subsets

‘%7%7%7’%’.}‘217"71('

@ The jth subset posterior [1; computed from the j-th subset

containing M; data points drawn randomly from the entire
domain, M; +---+ My > n.

Aggregate
subset
inference
Bayesian T S N Bayesian
Inference e Inference
with 1y 000 with [y
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Construction of Subset Posteriors

Subset Posterior: “Weak Learner” of Full Posterior

N;(8,6, 7%, 2;, %) « | p(%|Z;, 2. 8,0,7%) "™ p(B,0,7)

© Likelihood: N(y;|X;B3,Z;Co,;Z}+ 7211,)
O Prior Distribution
@ These are “Stochastic Approximations” of the full posterior

ng,0,m%,2,%).

@ For easier implementation you may get rid of the power
n/M; = satisfactory point estimation, wider confidence
intervals.

How to combine [1;'s optimally?
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Combine Subset Posteriors Marginally: Li et al. (2017),
Biometrika; G. et al. (2022), Stat. Sci.

o Compute Wasserstein mean 1 of My, ..., M.
Each M; multivariate normal = [ multivariate normal

e h(0,8) € R, a 1D parametric function of (8, 3).

° ﬂjfl(u): uth quantile of the jth subset posterior distribution
of h(0,8), uc(0,1).

o If M~1(u) is the uth quantile of the Wasserstein mean, then

PIE Combination: M~1(uv) = ¢ 1’5:1 I'Ij_l(u), Vue(0,1)

@ Combines marginals of posterior distribution separately.
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General Subset Posterior Aggregation Approach

e £ f-th post burn-in iterate of model parameters from the
j-th subset.

(&1, EiF)
Compute
|f; = Empirical Mean
3, = Empirical Variance

Center and Scale = aggregate (fi3, ..., fix)

e
V=3 (&)

2= aggregate (2, ...,

Rescale and Center
E _— . =l/2
Limpin
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Important Special Cases

Aggregated Monte Carlo (AMC) (G. et al., 2022, JMLR)
n= % Jl'(:lﬁjv i:AM{fb?ik}

Wasserstein Posterior (WASP) (G. et al., 2022, JMLR)
[1’: % J"(:lﬁjv i:GM{il77ik}

@ WASP uses geometric mean for aggregating )A:j's.

@ Geometric mean requires computing an iterative algorithm.
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Novelty vis-a-vis Existing Divide & Conquer Techniques

@ Aggregation of Subset Posteriors through Median (Minsker et
al., 2017)

e Computation of Meta Posterior (Guhaniyogi and Banerjee,
2017)

e Consensus Monte Carlo (CMC) (Scott et al., 2016),
Semiparametric Density Product (SDP) (Neiswenger et al.,
2014).

o ADVI (Kucukelbir et al., 2017).

@ Both theory and practice for uncertainty quantification of
parameters are unavailable for spatial /spatio-temporal process
models.
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Convergence Rate Results, G. et al. 2022, JMLR

For notational simplicity, we denote u = (s, t), and assume
M1:~--:Mk:M:n/k.

True Model (.#)) and Fitted Model (.#)

A y(u) = z(u)y(u) + €(u), y(u) = (n(v), ..., ym(u))’
My - y(u) = z(u)vo(u) + e(u), vo(u) = (Y0.1(u1), -, Y0.m(u))’

The cross-covariance function for (u) has bounded
eigenfunctions and polynomially decaying eigenvalues.
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Convergence Rate Results, G. et al. 2022, JMLR

For notational simplicity, we denote u = (s, t), and assume
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Convergence Rate Results, G. et al. 2022, JMLR

For notational simplicity, we denote u = (s, t), and assume
M1:~--:Mk:M:n/k.

True Model (.#)) and Fitted Model (.#)

A y(u) = z(u)y(u) + €(u), y(u) = (n(v), ..., ym(u))’
My - y(u) = z(u)vo(u) + e(u), vo(u) = (Y0.1(u1), -, Y0.m(u))’

The cross-covariance function for (u) has bounded
eigenfunctions and polynomially decaying eigenvalues.

The function g g(u) has v degrees of smoothness.

subsets are disjoint and subset size M must be greater than a
certain fraction of n depending on v.

Subset posterior aggregation schemes follow a general rule
satisfied by PIE, AMC and WASP.

Then 70 ¢ is estimated close to the optimal rate of n=2v/(2v+3),
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Sea Surface Temperature (SST) and Sea Surface Salinity
(SSS)

Morphed compasite: 2016-01-28 00:00:00 UTC

— T T
9 ,7? % : 3 24

Latitucte
e
IS

Total Precipitable Water {mm)

-140 130 120 110
Longitude

(=)e(+)

@ Data from Hadley Center of the MET office in UK.

o Data on SST and SSS between 0° — 70° N. latitude and
0% — 80° W. longitude.

@ We consider ~ 110K space-time observations on SST and
SSS over the 12 months in 2018.
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Fit: SST(s, t) = Yo(s, t) + 71(s, t) SSS(s, t) + €(s, t)

Estimated Map of ~1(s, t) in the North Atlantic

January 2018 May 2018 September 2018

-
[OR] L3 [OR=4
< ° k= bl
29 2o =
=g =8 =8
o ks i)
s Bl | ol
-70 -50 -30 -10 =70 -50 -30 -10 =70 -50 | 10
longitude longitude longitude
[ ] | ] [ ]
10 15 20 1.0 15 20 25 1.0 15 20

@ Divide data into 400 subsets.

@ An overall positive association between SSS and SST from
equator to the pole.

© In lower latitude, due to the pronounced salt accumulation as
a result of excess heating and oceanic currents, SSS surges.

@ SSS decreases in comparison with SST during winter, except
for the Brazilian coast due to the strong North Brazil Current.
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Predictive Inferential Accuracy

Predictive Inference on 600 hold out observations'

Coverage | MSPE | 95% PI Length | Efficiency— '°g2(ECf£'m5")"’_‘mTpi':]eSize)
AMC | 098 2.92 6.60 9.99
PIE | 007 2.93 5.93 -
cMC | 0.90 74.95 24.71 1.06
WASP | 0.8 2.92 5.66 9.99

Some Important Findings

© All divide-and-conquer schemes with the theoretical backing
perform similarly.

@ Popular ML aggregation scheme CMC offers suboptimal
inference.
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