Invariance and equivariance in deep network learning: mathematical representation, probabilistic symmetry, Variable Exchangeability, and Sufficient Statistics

Yueyang Shen

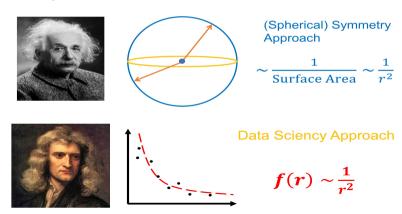
October 20, 2023

Overview

- Motivation
- 2 Preliminaries
- 3 Connecting statistical inference, deep neural networks, biomedical applications, and physics
- 4 Computational Examples
 - Group invariant Calabi-Yau
- 6 Appendix
 - Deep sets and geometric deep learning
 - Pseudo (Approximate) invariance/equivariance
 - Spacekime analytics Porject
- 6 Reference

Motivating Example: Symmetry is more fundamental than observational pattern.

Inverse square law is the only possibility in Einstein's theory of gravity, while Newton only hypothesize the inverse square law.



Symmetry and parsimony emerges from biological structures ¹

- Mathematical perspectives Symmetry is the most effective way to encode biological representation information and more likely to emerge from random mutations.
- Protein Complexes, RNA secondary structures, and model gene regulatory framework exhibit exponential bias to simpler (and symmetric structures).

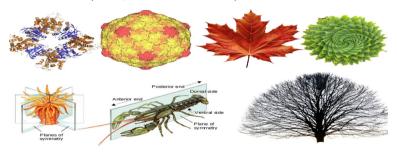


Figure: Twitter thread by chico Camargo

¹lain G Johnston et al. "Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution". In: Proceedings of the National Academy of Sciences 119.11 (2022), e2113883119

Overview

- Motivation
- 2 Preliminaries
- 3 Connecting statistical inference, deep neural networks, biomedical applications, and physics
- 4 Computational Example
 - Group invariant Calabi-Yau
- 6 Appendix
 - Deep sets and geometric deep learning
 - Pseudo (Approximate) invariance/equivariance
 - Spacekime analytics Porject
- 6 Reference

Mathematical invariance and equivariance

• Invariance and Equivariance:

$$f$$
 is \mathfrak{G} -Invariant if $f(
ho(\mathfrak{g})x)=f(x) \quad orall \mathfrak{g} \in \mathfrak{G}$
 f is \mathfrak{G} -Equivariant if $f(
ho(\mathfrak{g})x)=
ho(\mathfrak{g})f(x) \quad orall \mathfrak{g} \in \mathfrak{G}$

- This exactness can be relaxed Approximate invariance
- Examples:
 - ▶ We want the *image segmentation* to be Equivariant to translation, i.e., if we shift the object $f(\rho(\mathfrak{g})x)$ then the output of the learning segmentation should be shifted as well $(\rho(\mathfrak{g})f(x))$.
 - ▶ We want the *image classification* to be Invariant to translation, i.e., if we shift the object $f(\rho(\mathfrak{g})x)$ then the output of the class label should be unchanged (f(x))

Preliminary - Neural network examples

There are two ways of realizing deep network model invariance:

- Data Augmentation (data driven)
- Building invariance into the architecture through weight sharing (model-based).

An effective G-invariant model inference framework is composed of several equivariant functions $f_1^e,...,f_n^e$ followed by a final invariant function f^i , i.e., $f^i \circ f_n^e \circ f_{n-1}^e \circ ...,f_1^e$. Examples:

Vanilla NN	CNN	GNN	Self-attention layers
No symmetry	translation symmetry	Permutation symmetry	Permutation equivariant

Other 2D/3D geometrical roto-translational symmetries: E(2), SE(3), SO(3)

▶: $\mathfrak{G} - CNN$, Steerable CNNs ², SE(3) – transformer ³

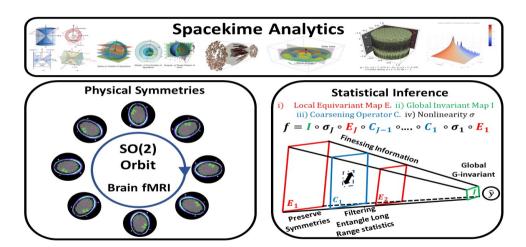
²Maurice Weiler and Gabriele Cesa. "General e (2)-equivariant steerable cnns". In: *Advances in Neural Information Processing Systems* 32 (2019)

³Fabian Fuchs et al. "Se (3)-transformers: 3d roto-translation equivariant attention networks". In: Advances in neural information processing systems 33 (2020), pp. 1970–1981

Overview

- Motivation
- 2 Preliminaries
- 3 Connecting statistical inference, deep neural networks, biomedical applications, and physics
- 4 Computational Examples
 - Group invariant Calabi-Yau
- 6 Appendix
 - Deep sets and geometric deep learning
 - Pseudo (Approximate) invariance/equivariance
 - Spacekime analytics Porject
- 6 Reference

Symmetries, Biomedical application, Information, and spacekime analytics



 Mathematical Invariance: (Working paper) Invariance properties of spacekime representations in relation to probabilistic symmetry, variable exchangeability, and sufficient statistics.

Physics example - symmetries, invariance and model equations

Physical Scenarios	Physical Space	(Lie) groups Symmetries /Invariance	Conservation Laws	Equations of motion
Rigid Bodies Rotation	\mathbb{R}^3 Dof: 6(3T3R)	SO(3)	Angular momentum (also casimir) $C(\Pi) = 1/2(\Pi_1^2 + \Pi_2^2 + \Pi_3^2)$	$\dot{\Pi} = \Pi \times \Omega$
Shallow water waves kdV	(\mathbb{R},t) Dof: infinite (field)	Infinite many: Translational, Scaling symmetry $\lambda^2 u(\lambda x, \lambda^3 t)$	Infinite conserved quantities $\int_{a}^{b} P_{(2n-1)}(\phi, \phi_{x}, \dots) dx$ $P_{1} = \phi$ $P_{n} = -\frac{(dP_{n-1})}{dx} + \sum_{i=1}^{n-2} P_{i} P_{(n-1-i)}$	$u_t + 6uu_x + u_{xxx} = 0$
Gravity	Spacetime $(M,g_{lphaeta})$	Diffeomorphism invariance	Local conservation of energy and momentum (zero divergence) $ abla_{\mu} T^{\mu u} = 0$	$G_{lphaeta}+\Lambda g_{lphaeta}-1/2 \ Rg_{lphaeta}=T_{lphaeta}$
Incompressible fluid flow	Ω	Diffeomorphism invariance	Volumetric divergence is zero	$\frac{D\Gamma}{Dt} = 0$

Complex-Time Models of Longitudinal Processes and Spacekime Analytics

Math invariance, probabilistic symmetry, PDE modeling, data science

- **Physics**: (Lie) group symmetries are important in characterizing the model equations of classical physical systems.
- **Deep networks**: Deep neural network invariance is realized by weight sharing schemes (model-based) or emergence from data augmentation (data-driven).
- Probability and Statistics: When we introduce stochasticity into the system, classical (deterministic) symmetry is related to probabilistic symmetry where exchangeability and stationarity are primary examples.
- Representation and information compression: Sufficiency describes the information that is relevant to the inference and probabilistic symmetry and invariance identify information that is irrelevant to the statistical inference and ideally needs to be compressed.

Overview

- Motivation
- 2 Preliminaries
- 3 Connecting statistical inference, deep neural networks, biomedical applications, and physics
- 4 Computational Examples
 - Group invariant Calabi-Yau
- 6 Appendix
 - Deep sets and geometric deep learning
 - Pseudo (Approximate) invariance/equivariance
 - Spacekime analytics Porject
- 6 Reference

Group Invariant Kreuzer Skarke - Problem formulation

Mathematical invariance

- The dataset of reflexive polyhedra in dimension four with 26 vertices, consisting of around 78,000 polytopes. Learn to predict its Hodge numbers.
- Learn a mapping $f: \mathbb{R}^{4 \times 26} \to \mathbb{Z}$, $M \mapsto h^{1,1}(M)$
- Symmetry group: $S_4 \times S_{26}$

Full data augmentation:

$$26! \times 4! = 9.68 \times 10^{27} \tag{1}$$

The full data augmentation is impossible for computation. Previous benchmark is 46.89%⁴.

⁴Per Berglund, Ben Campbell, and Vishnu Jejjala. "Machine Learning Kreuzer–Skarke Calabi–Yau Threefolds". In: arXiv preprint arXiv:2112.09117 (2021)

Group Invariant Kreuzer Skarke

Model	Acc (orig)	Acc (rnd perm)
Random Guess	2.85%	2.85%
Majority Class Only	11.28%	11.28%
MLP with reduced input [2]	46.89%	46.89%
MLP(CNN)	$56.71 \pm 0.38\%$	$30.78\pm0.49\%$
$MLP(CNN) + \pi$	$71.98 \pm 0.61\%$	$61.28\pm0.35\%$
XGBoost [4]	55.02%	29.70%
$XGBoost + \pi$	70.63%	59.84%
Vision Transformer	$62.06 \pm 0.44\%$	$43.70\pm0.60\%$
Vision Transformer $+\pi$	$69.00 \pm 0.48\%$	$61.02 \pm 0.63\%$

▶ Pointnet and partially invariant with encoder-decoder architecture brings the classification result to high 90% s.

Group invariant Kreuzer Skarke Conclusion

- Building group invariance, or even partial invariance, into string theory Kreuzer Skarke dataset improve model AI performance.
- Non group invariant models benefit from the introduction of a group invariant preprocessing step.

Overview

- Motivation
- 2 Preliminaries
- 3 Connecting statistical inference, deep neural networks, biomedical applications, and physics
- 4 Computational Examples
 - Group invariant Calabi-Yau
- 6 Appendix
 - Deep sets and geometric deep learning
 - Pseudo (Approximate) invariance/equivariance
 - Spacekime analytics Porject
- 6 Reference

• Invariance and Equivariance:

$$f$$
 is \mathfrak{G} -Invariant if $f(\rho(\mathfrak{g})x)=f(x) \quad \forall \mathfrak{g} \in \mathfrak{G}$ f is \mathfrak{G} -Equivariant if $f(\rho(\mathfrak{g})x)=\rho(\mathfrak{g})f(x) \quad \forall \mathfrak{g} \in \mathfrak{G}$

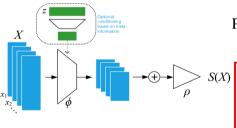
Theorem

Group convolutions are all you need for equivariance [T. Cohen 1811.02017][E. Bekkers, 1909.12057] The linear operator $K \in \mathcal{H}$ is equivariant to group iff:

- It is a group convolution $[\mathcal{K}f](y) = \int_X \frac{1}{|g_y|} k(g_y^{-1}x) f(x) dx$
- The kernel is subject to symmetry constraint for $H: \forall_{h \in H} \frac{1}{|g_y|} k(hx) = k(x)$ where $\mathcal{K}: \underbrace{\mathbb{L}_2(X)}_{2D \text{ image}} \rightarrow \underbrace{\mathbb{L}_2(Y)}_{image \text{ index on group elements}}_{image \text{ index on group elements}}$

identified by the symmetry H, $Y = \mathfrak{G}/H$ such that for some chosen origin $y_0 \in Y$ $g_y \in \mathfrak{G}$ we have $\forall_{y \in Y} : y = g_y y_0$

- Invariance and Equivariance:
- Permutation Invariance and Equivariance⁵:

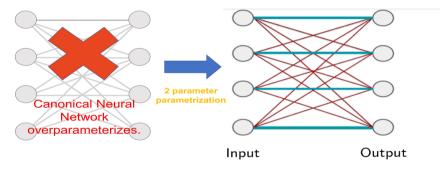


Permuation Invariance (Countable Case):

$$f(x) = \rho\left(\sum_{x \in X} \phi(x)\right)$$

5Manzil Zaheer et al. "Deep sets". In: Advances in neural information processing systems 30 (2017) → ⟨₹⟩ ⋅ ₹⟩ ⋅ ₹⟩ ⋅ √ ९ ⟨€⟩

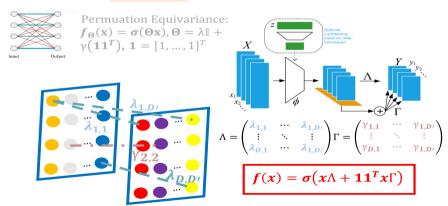
- Invariance and Equivariance:
- Permutation Invariance and Equivariance ⁶:



Permuation Equivariance:

$$f_{\Theta}(\mathbf{x}) = \sigma(\Theta \mathbf{x}), \Theta = \lambda \mathbb{I} + \gamma(\mathbf{1}\mathbf{1}^T), \mathbf{1} = [1, ..., 1]^T$$

- Invariance and Equivariance:
- Permutation Invariance and Equivariance ⁷:



7Manzil Zaheer et al. "Deep sets". In: Advances in neural information processing systems 30 ₫2017) → ⟨₹⟩ ⟨₹⟩ ⟨₹⟩

Learning Stable Representations of high-dimensional data.

- pointwise nonlineaity activation Result 1 If B is \mathfrak{G} -equivariant, then $\mathbf{U} = (\boldsymbol{\sigma} \circ B)$ is also \mathfrak{G} -equivariant (2)
 - ► Corollary: A general &-invariant family construction can be realized by composing the group average operation A with U, i.e., $A \circ U$ (Theoretical justification for CNN and \mathfrak{G} -CNN)

⁸Michael M Bronstein et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges". In: arXiv preprint arXiv:2104.13478 (2021)

Learning Stable Representations of high-dimensional data.

- Pesult 1 pointwise nonlineaity activation If B is \mathfrak{G} -equivariant, then $\mathbf{U} = (\boldsymbol{\sigma} \circ B)$ is also \mathfrak{G} -equivariant (2)
 - ► Corollary: A general \mathfrak{G} -invariant family construction can be realized by composing the group average operation A with U, i.e., $A \circ U$ (Theoretical justification for CNN and \mathfrak{G} -CNN)
- Result 2: Universal Approximation Theorems for &-invariant functions

Generalizing group average A, shallow geometric networks are also Universal approximators

⁸Michael M Bronstein et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges". In: arXiv preprint arXiv:2104.13478 (2021)

Learning Stable Representations of high-dimensional data.

- Pesult 1 pointwise nonlineaity activation

 If B is \mathfrak{G} -equivariant, then $\mathbf{U} = (\overset{\bullet}{\boldsymbol{\sigma}} \circ B)$ is also \mathfrak{G} -equivariant (2)
 - ► Corollary: A general \mathfrak{G} -invariant family construction can be realized by composing the group average operation A with U, i.e., $A \circ U$ (Theoretical justification for CNN and \mathfrak{G} -CNN)
- Result 2: Universal Approximation Theorems for &-invariant functions

Generalizing group average A, shallow geometric networks are also Universal approximators

Result 3: Fundamental tension for shallow global invariance and deformation stability.

Solution: Localized Equivariant Maps (Kernels) - Example given later.

⁸Michael M Bronstein et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges". In: *arXiv* preprint *arXiv*:2104.13478 (2021)

Learning Stable Representations of high-dimensional data.

- pointwise nonlineaity activation Result 1 If B is \mathfrak{G} -equivariant, then $\mathbf{U} = (\boldsymbol{\sigma} \circ B)$ is also \mathfrak{G} -equivariant (2)
 - ► Corollary: A general &-invariant family construction can be realized by composing the group average operation A with U, i.e., $A \circ U$ (Theoretical justification for CNN and \mathfrak{G} -CNN)
- Result 2: Universal Approximation Theorems for &-invariant functions

Generalizing group average A, shallow geometric networks are also Universal approximators

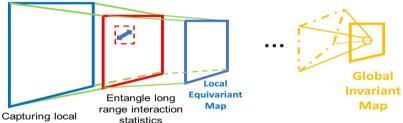
- Result 3: Fundamental tension for shallow global invariance and deformation stability. Solution: Localized Equivariant Maps (Kernels) - Example given later.
- Building Blocks: i) Local Equivariant Map. ii) Global Invariant Map. iii) Coarsening Operators.

⁸Michael M Bronstein et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges". In: arXiv preprint arXiv:2104.13478 (2021)

Need multiple local equivariant Map to entangle long-range action

- i) Local Equivariant Map B.
- ii) Global Invariant Map A.
- iii) Coarsening Operators C.

$$f = A \circ \sigma_J \circ B_J \circ C_{J-1} \circ \cdots \circ C_1 \circ \sigma_1 \circ B_1$$



symmetries

⁹Michael M Bronstein et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges". In: arXiv preprint arXiv:2104.13478 (2021)

Approximate equivariance

Invariance/Equivariance Motivation: For practical modeling of the heat equation

$$u_t = \kappa \underbrace{\nabla^2 u_{xx}}_{\text{rotational symmetric}} \tag{3}$$

we may have air bubbles in modeling gas, or the material is not pure in modeling solids, hence the Laplacian cannot guarantee full rotational symmetry. 10

Definition (Approximate Equivariance/Invariance)

With $f: X \to Y$ be the inference function and the group homomorphism $\rho_X: G \to GL(X)$ and $\rho_Y:G\to GL(Y)$, then f is ϵ -approximate G-equivariant if for all $g\in G$

$$||f(\rho_X(g)(x)) - \rho_Y(g)f(x)|| \le \epsilon \tag{4}$$

 ϵ -approximate G-invariant if for all $g \in G$

$$||f(\rho_X(g)(x)) - f(x)|| \le \epsilon \tag{5}$$

¹⁰Rui Wang, Robin Walters, and Rose Yu. "Approximately equivariant networks for imperfectly symmetric dynamics". In: International Conference on Machine Learning. PMLR. 2022, pp. 23078-23091

Spacekime Goals

Spacekime Analytics

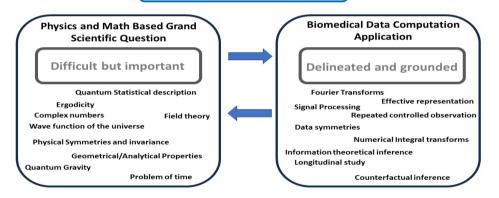


Figure: The high level goal for spacekime

Spacekime Goals

- This project involves two kinds of research question: one is very grand scientific representation models, the other is more practical, pragmatic, theoretical, but computational tractable models.
- The big goals (open-ended) complement with the grounded biomedical computation goals (concrete).
- If some of the physics problem can not be resolved we can find concrete invariances to apply to our biomedical studies.
- The implication of the biomedical theoretical analysis and data computation would have direct benefit to biomedical application.

References

- [1] Per Berglund, Ben Campbell, and Vishnu Jejjala. "Machine Learning Kreuzer-Skarke Calabi-Yau Threefolds". In: arXiv preprint arXiv:2112.09117 (2021).
- [2] Per Berglund, Ben Campbell, and Vishnu Jejjala. Machine Learning Kreuzer-Skarke Calabi-Yau Threefolds. 2021. DOI: 10.48550/ARXIV.2112.09117. URL: https://arxiv.org/abs/2112.09117.
- [3] Michael M Bronstein et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges". In: arXiv preprint arXiv:2104.13478 (2021).
- [4] Tianqi Chen et al. "Xgboost: extreme gradient boosting". In: R package version 0.4-2 1.4 (2015), pp. 1-4.
- [5] Fabian Fuchs et al. "Se (3)-transformers: 3d roto-translation equivariant attention networks". In: Advances in neural information processing systems 33 (2020), pp. 1970–1981.
- [6] Iain G Johnston et al. "Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution". In: Proceedings of the National Academy of Sciences 119.11 (2022), e2113883119.
- [7] Rui Wang, Robin Walters, and Rose Yu. "Approximately equivariant networks for imperfectly symmetric dynamics". In: International Conference on Machine Learning. PMLR. 2022, pp. 23078–23091.
- [8] Maurice Weiler and Gabriele Cesa. "General e (2)-equivariant steerable cnns". In: Advances in Neural Information Processing Systems 32 (2019).
- [9] Manzil Zaheer et al. "Deep sets". In: Advances in neural information processing systems 30 (2017).