Constructing a Geographical Database

Richard A. Becker
Allan R. Wilks

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The map () function in S permits a wide range of line and filled area
maps to be drawn for use with map-oriented data analysis. The data
underlying these maps is stored in a geographical database. This report
describes the format of the geographical database and the steps involved
in constructing one. The process is illustrated by our experience in creat-
ing a database for the coastlines and national political boundaries of the
world.

The world database allows data to be displayed on a map of the
entire world or on smaller subsets such as Europe or individual countries.
The data comes from the World Data Bank II (US Dept. of Commerce)
but we have performed edits to correct digitizing errors and have added
accurate descriptions of the polygonal regions that make up each country.
Because the database contains polygonal information, choropleth maps
can be drawn that use data values to control the color of regions, and
because it is so detailed, maps can be made in a wide range of scales.

While we do not expect most people will want to build an S geo-
graphical database, there are many possible applications requiring new
base maps and this report documents the process of constructing such a
database so that it is accessible to anyone who wants to try.

September 16, 1997

Constructing a Geographical Database

Richard A. Becker
Allan R. Wilks

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

Our previous document, "Maps in S" (Becker and Wilks, 1991), described a set of S
functions for displaying maps. The software to implement these functions was intro-
duced with the August, 1991 version of S, along with a county-level database of the
United States. Almost immediately following this introduction, we received requests for
other map databases: of LATAs, particular countries, or even the entire world. This
report is an answer to those requests. It describes how we produced a world database for
S, documenting the process step by step. It also describes the format of the data expected
by the S mapping facility. The world database that we constructed was made available
on the statlib serverf in April, 1992 and is sufficiently detailed that it should immediately
answer many of the map requests we have received. In addition, the description of how it
was built provides a model for constructing other databases.

2. The Data

There are a number of steps in creating a geographical database for use with the
map () function in S. Our goal in this report is describe each of these steps as they were
actually carried out in a large example. The final product of this process is what we call
a geographical database, which consists of a set of three files, containing information on
polylines, polygons, and region names. The actual format of the data in these files will
be described later. For now, we need to know the structure of the information in these
files in order to understand the process used to create them.

The polyline file describes a set of polylines, each of which is a connected sequence
of points on the earth’s surface —the vast majority of the data in the polyline file consists
of the coordinates of these points. The polygon file says how to fit the polylines together
to form closed polygonal regions, each representing a country or state or province, for
example. The relationship between the polylines and polygons—the topology of the
map—is also stored in these two files. Each polyline is directed; in other words, it has a
beginning and an end (its first and last points) and therefore a left side and a right side, as

1 The statlib server is a computer at Carnegie-Mellon University that provides a repository for
statistical programs and data, much like the net1ib server (Dongarra and Grosse, 1987) provides
facilities for numerical software. To retrieve the world database, send the message send
world.map from S to statlib@lib.stat.cmu.edu. The server will send a description of
the access procedure via return mail.

2.

if you were standing at the first point of the polyline, looking toward the second. Each
polyline is given a number, and the definition of a polygon is a list of these numbers,
together with instructions on the direction in which to follow each polyline—forward or
reverse—when making a complete circuit around the polygon. Each polygon is given a
number, and the definition of a polyline also contains the information about which poly-
gon is to the left of it and which is to the right. Finally, the region name file gives a
name to each of the polygons.

These three files must be constructed from whatever raw information is available.
We assume that someone has already digitized the desired information, giving coordi-
nates of the endpoints of the individual line segments that comprise the map. In other
words, we are assuming that we start with at least the individual line segments of the
polylines. We may, however, have more information than this. For example, the Census
Bureau data, which we used to construct the state and county maps, included for each line
segment, the region (state and county) to each side of it. The world data, described in
detail here, provided individual line segments already joined into polylines but no infor-
mation was included about the polygons bounded by the polylines.

The World Data Bank II (WDBII) data consists of 33827 polylines, each of which is
given as a sequence of latitude/longitude pairs. The polylines are divided into regions of
the world (North America, South America, Europe-Africa, and Asia) and into four classi-
fications within the regions. The classifications are: international boundaries or limits of
sovereignty; coast, islands, and lakes; rivers; and internal boundaries. These classifica-
tions are further subdivided by importance of the features. We extracted data for 4115 of
the polylines. These were comprised of the 2976 polylines of coasts, islands and lakes
denoted in the database by

* coast, islands and lakes that appear on all maps
and the 1139 political boundary polylines labelled as

¢ demarcated or delimited (1038)

* indefinite or in dispute (57)

* lines of separation or sovereignty on land (38)

* no defined line; guide only; South Arabian Peninsula (6)

We omitted the remaining approximately 30,000 polylines. These corresponded to
smaller islands and lakes, as well as reefs, salt pans, ice shelves and glaciers. We also
left out about 150 polylines corresponding to ill-defined boundaries, as well as most of
the river polylines, since they don’t serve to separate the land belonging to nations. (This
is a statement about the database, not about boundaries in general; when a political
boundary lies along a river, WDBII will mark it as a political boundary and hence it will
be included in the subset we chose.) We also included none of the internal boundary
polylines (US states and Canadian provinces), as our goal was to make a map only of
nations.

With the major changes that have occurred in the world political situation since
1990, it is important to note here that our data was collected at a prior point in time and
corresponds to an outdated world. Of course, the coast, islands, and lake data is still cor-
rect, as are most of the political boundaries. However, we did update boundaries that
were easy to do. In particular, we removed the boundaries between East and West

-3

Germany and between Yemen and the Peoples Republic of Yemen. We did not, how-
ever, attempt to introduce the boundaries corresponding to the Baltic states or the Com-
monwealth of Independent States. To do so would have required digitization of those
boundaries.

3. Editing the data

Having extracted a subset of the WDBII data consisting of 4115 polylines, com-
prised of 1685078 vertices, we needed to make sure that certain constraints were satis-
fied, to make it possible to construct the sort of database that the map () function expects.
There are three such constraints; we give two of them here and defer the third until later.
If we think of the polylines as defining an abstract graph embedded in the plane{ where
the segment endpoints are the vertices and the segments themselves are the edges, then to
ensure that the plane is covered by simple closed regions, the data must satisfy:

Constraint #1: the valence of each vertex is at least two
Constraint #2: intersecting segments do so only in a common endpoint

The valence of a vertex is the number of edges having the vertex as an endpoint. A ver-
tex that has valence one is dangling and corresponds in this database to a polyline with an
endpoint that doesn’t connect to anything else in the database. A vertex with valence
zero can’t happen in WDBII because of the structure of the data. Individual segments of
polylines can intersect in many ways (in a point interior to both segments, in a subinter-
val of each segment, in the interior of one segment and the endpoint of another, etc.) but
only one type of intersection is allowed, viz, when two segments share a single common
endpoint.

Our next step was to construct a program that graphically displayed the data, and
automatically found places where one of the two constraints was violated. There turned
out to be many such violations. We began by looking for dangling vertices; there were
about 2000 of these, or roughly one third of the polyline endpoints. To deal with these
we included some editing facilities in our program. The idea behind the editing was to
modify the selected polylines in such a way that the constraints became satisfied. We
made an early decision not to introduce any new coordinates into the polylines; in this
way, each edit could be described as a discrete manipulation of the existing vertices.

We also thought that a sequence of edits would be an ideal way to export the data.
The idea was that anyone wanting a world database would be able to request the World
Data Bank II from the Department of Commerce and the file of edits from us. They
could then extract the appropriate subset of the data, and run a small program that would
apply our edits, giving them a clean database. We would not have to ship a large data-
base of world coordinates and the approach would be appropriate even if the world data
had been proprietary. We ultimately decided against this technique for several reasons:

1 The graph should actually be considered as embedded in a sphere, in order to preserve line seg-
ments that cross the 180 degree meridian. This could be achieved by first stereographically pro-
jecting the data from the globe to a plane, using, say, one of the poles for the projection point. We
have chosen not to do this, so that as we worked with the data graphically, the shapes were the fa-
miliar ones of the world map— stereographic projection would have destroyed this property. Em-
pirically, very few segments crossed the 180 degree meridian.

-4 -

first, manual effort is necessary to get WDBII; second, WDBII is public domain data and
can be freely distributed; third, our file of edits became large itself.

Polyline B

Dangﬁng
Vertices

Polyline A

Figure 1. Two polylines, A and B, each with a dangling vertex. The editing solution here is to
““snap’’ the dangling endpoint of A to be equal to the dangling vertex of B (or the other way
around —it doesn’t matter).

A common situation is represented schematically in Figure 1, where we show two
polylines, called A and B, each with a dangling vertex. More than likely, the map that
was being digitized showed just one line here, so that the two dangling vertices ought to
be one and the same. This can happen, for example, when returning to the starting point
of an island. In any case, we make this assumption and force the connection. Because of
our decision not to introduce new vertices, we choose to correct this situation by ‘‘snap-
ping’’ the dangling end of A to be equal to the dangling end of B (or the other way
around —it doesn’t matter). This is recorded by saying that vertex n of A takes on the
coordinates of vertex m of B.

Each of the roughly 2000 dangles was manually corrected in this way after visual
inspection of the situation. In cases where two dangling endpoints were very near one
another, the snapping process could have been automated. However, we found from our
visual inspection that there were many other situations where human intervention was
necessary in order to choose the correct way to snap. In any case, the process of finding
the dangles was automated and our editing software enabled us to move rapidly from one
dangle to the next.

Having satisfied Constraint #1, we then turned to Constraint #2. To do this we com-
puted every intersection among the two million segments. This computation was facili-
tated in two ways. First we computed the bounding box of each polyline, and then only
compared two segments if the bounding boxes of their polylines overlapped. Second,
having found two polylines with overlapping bounding boxes, we computed the intersec-
tions of their line segments with a sweep-line algorithm. Each time we found an inter-
section not satisfying Constraint #2 we recorded it for later editing.

_5.

There were a number of situations that were uncovered by this computation. A sim-
ple one was duplicate polylines—for an unknown reason, there were a number of poly-
lines in the database that were simply repeated. The edit for these was simply to remove
the extra copies. Another common situation was the crossing of two political boundaries,
without a vertex at the intersection point. This situation is illustrated in Figure 2. The
solution is to pick the closest pair of vertices and snap one to the other (as well as to split

the polylines at this common vertex as described below). Automation of this task would
have been very difficult.

Polyline A

Polyline B

Figure 2. Anillegal crossing of two polylines —the intersection point should be a vertex of each
polyline. The solution is simple; just snap a vertex of Polyline B to a nearby vertex of Polyline A,
as indicated by the arrow.

Though the solution just described for repairing an illegal crossing is sufficient to
achieve satisfaction of Constraint #2, it leaves the two polylines in a state that makes
them unsuitable for use as polylines in the final database. Of course, we could take the
point of view that once the editing done, we will split each polyline into its component
segments and send these to a database constructor as raw data. In fact, this is the
approach we used for the construction of a UK database to be described in section 9. It
seemed a waste, however, not to take advantage of the fact that WDBII already organized
its data in polylines, and to use these polylines as much as possible. However, there are
some constraints associated with compiling our original set of vertices and line segments
into a geographical database, and if we are to keep the WDBII polylines, we must ensure
that these constraints are still satisfied.

Here, then, is a further constraint:
Constraint #3: vertices interior to a polyline have valence two

The purpose of this constraint is to ensure that when we establish the regions of the map,
each polyline will have a unique region to each side of it. Looking at Figure 2, we see
that the region to the left of polyline B, looking along the polyline from the upper left to
the lower right of Figure 2, changes at the newly created intersection point. The same is
true of the region to the right of polyline B and the regions to both sides of polyline A.

_6-

The problem is that for both polylines, the intersection vertex is an interior vertex with
valence 4 in the graph.

To repair this problem, we added another editing operator— ‘‘split polyline’” —
which breaks one polyline into two at the indicated vertex. The actual sequence of edits
in Figure 2 would be first to split each polyline at the vertex that will become the inter-
section point, giving four polylines in place of the two. Then each of the two new end-
points of (former) polyline B is snapped to the intersection vertex.

Another way in which Constraint #2 failed to be satisfied happened for polylines
representing a long spit of land extending into the ocean, such as at Cape Hatteras in
North Carolina. When the width of the spit was small compared to the digitizing error
(presumably) the polyline tended to cross itself, sometimes as much as 30 or 40 times.
Though this is really a special case of the situation illustrated in Figure 2, we neverthe-
less took care of it with a new editing operator— ‘‘untwist.”” The idea of untwist is to
travel along the polyline until just before the bad intersection, then ‘‘hop’’ to the later
vertex that happens just before the intersection occurs again. At that point, follow the
polyline in the reverse direction and cross over again where the intersection is. This is
illustrated in Figure 3.

Vertex j-1

Vertex i+1

Vertex i

Figure 3. A polyline that crosses itself multiple times can be ‘‘untwisted.”” In (a), vertex i and
vertex j are chosen for the untwisting operation. Assuming i is less than j, the part of the polyline
between these two vertices is rearranged by following first the arrow from i to j— 1, then the poly-
line in reverse order from j—1 to i + 1, then the arrow from i + 1 to j. The result of the operation is
shown in (b). In this example, at least two more untwists are needed to remove all intersections.

Each of these situations, and several others, were disposed of using our interactive
program and the four editing operators described above. When we had completed all of
the edits, we checked the Constraints and found them to be satisfied. In all, we applied
7860 edits to clean up the data:

6737 snap a vertex to another vertex
237 split a polyline at an interior vertex
448 delete a polyline

438 perform an untwist operation

One final editing operation was carried out automatically when the edited database
was written. The points along each polyline were checked for adjacent duplicates and
those duplicates were omitted. This operation made it unnecessary to have an explicit
““delete point’’ edit, because points could be deleted by snapping them to an adjacent
point. Thus, some of the 6737 “‘snap’’ edits really correspond to ‘‘delete’’ operations.

It is possible to check the validity of Constraints #1 and #2 without using a graphi-
cal interface to the data, though repairing failures non-graphically is tedious. In
Appendix A we give code to do the validity checks.

4. Constructing the geometry

We now describe the process of constructing the geometrical information in a geo-
graphical database from a graph that satisfies Constraints #1 and #2. In what follows, we
assume that one is given just the graph: the vertices and line segments (as pairs of ver-
tices) of the map. This is rather less information than we began with in the WDBII data;
starting with the segments joined into polylines means that some of what we are about to
say is unnecessary. But since in our experience, geographical data comes in a variety of
forms, we decided to present the following algorithms assuming the bare minumum of
initial data.

The construction process involves these steps:

* find the connected components of the graph
* embed the graph in the plane

* construct the graph dual of each component
* construct polylines from individual segments
* find regions between the polylines

We describe each of these in turn.

4.1. Connected components

Two vertices are connected if one can be reached from the other by moving along
edges of the graph. Maximal groups of such vertices, together with their incident edges,
form the connected components of the graph. These presumably correspond to large land
masses or islands in the map. Finding components can be done easily with a short recur-
sive procedure that begins by visiting each vertex connected directly to the first vertex of
the graph, then visiting each of the vertices connected to these and so on. Each vertex
visited gets marked with a 1, say. When no more unmarked vertices can be reached, the
next unmarked vertex in the graph is found and the procedure is repeated, using a mark of
2 for visited vertices. In this way, each vertex is visited and marked with a tag corre-
sponding to the component of which it is a part. In our edited WDBII data, there were
2110 such components, of which most were islands.

4.2. Embedding the graph

The basic idea in finding the polygons of the map is to start at some vertex and walk
around a polygon. This requires that whenever we reach a vertex of valence 3 or more,
we must make a decision about which edge to use next. This decision can be made if we
know how the edges incident at a vertex are ordered in a clockwise (or counterclockwise)
direction. Figure 4 illustrates this.

Figure 4. The embedding of a vertex of valence 4. Embedding simply means numbering the
edges incident with the vertex in such a way that they trace around the vertex in order. It is irrele-
vant which edge is first; one consequence of this is that the only non-trivial computation is for ver-
tices with valence at least 3.

4.3. Finding the duals

The original graph divides the plane up into a number of regions. The goal of the
next step is to find the boundaries of those regions. The dual of the original graph is a
graph with a vertex for each of the regions and an edge connecting two vertices (regions)
whenever a segment of the original graph separates the two regions. Thus, its edges are
in one-to-one correspondence with the edges of the original graph. The dual computation
is done once for each connected component of the original graph and is accomplished by
tracing out the component region by region, going around each face in counterclockwise
order (say), by always making as sharp a left turn as possible at vertices with valence
greater than 3 (hence the need for the previous step.) At the conclusion of this process,
each component has split the plane into a number of regions, exactly one of which is
unbounded —the ‘‘ocean.”’

Here’s how the size of the duals came out with WDBII:

faces 2 3 4 5 31 133
count 2100 4 2 2 1 1

This implies that 2100 of the 2110 components are islands with no internal political
boundaries—just an inside face and an outside face. The component with 31 faces is the
North/Central/South America land mass and the one with 133 faces is the
Europe/Asia/Africa land mass.

4.4. Building the polylines

Next we find the polylines of the graph. By Constraint #3, the polylines can have
no internal vertices of valence more than 2. We choose to use polylines of maximal
length, viz, the endpoints always have valence at least three. Note that this is not satis-
fied in the case of an island consisting of a single polyline. Finding the polylines is

-9.

easy—find a vertex of valence of at least 3 and trace outward from one of its incident
edges until another vertex of valence at least 3 is reached. As we do so, we tag each seg-
ment with an indication of which polyline is being traced. Our world data had 3904 such
polylines. This is 211 less than the original 4115 polylines from the raw data, a reflec-
tion of the fact that there were duplicates among the original polylines and that some
polylines were joined and a few split in the editing process.

4.5. Finding the regions

The most interesting computational step is finding the regions. If there were only
one connected component of the original graph, the regions would correspond to vertices
of the dual graph. But with more than one connected component, an entire component
can be contained within a face of another component. This situation is illustrated in Fig-
ure 5 where we have a graph with two components with component B entirely contained
within face 2 of component A. The region between B and A is not a face of either com-
ponent, and must get a single label, i.e., it must be discovered that face O of B intersects
face 2 of A, and the intersection must be identified as a single region. If this is not done
then the polyline between B2 and A2 will be recorded as having region B2 on one side
and the ‘‘ocean’’ on the other (assuming that A0 is the ocean), which is wrong. The sim-
plest case of this problem is that each component’s unbounded face must be identified as
part of the same region, otherwise there will be many names for the ‘‘ocean.”’

Component A

Figure 5. Finding regions. Two components, each with three faces, with the unbounded face
numbered as face 0 in both cases. The region between the components is a face of neither, but
rather the intersection of what would be face 2 of A and face 0 of B. The problem is to regions
such situations and label them appropriately.

To find these regions we make a pass through the components. Each component is
contained in some face of each other component (usually the unbounded face)—we find
the smallest such containing face. The workhorse of this computation is the point-in-
polygon algorithm: given a point and a polygon, determine if the point is inside or out-
side the polygon. The computation is greatly speeded up by using the polygon bounding
boxes computed earlier for intersections. For the WDBII database there were 2285
regions, including the ‘‘ocean.”’

-10 -

5. Database format

Now that all of the geometrical information is computed, we have only to save it on
the files that make up a geographical database. Geographical databases for the map ()
facility in S can have two forms, an ASCII form and a binary one. The first is what one
normally produces when creating a database, and is useful for shipping databases
between computers. Software supplied with S allows conversion between the two for-
mats. The ASCII format is very simple. We number the polylines, beginning with num-
ber 1, and we similarly number the regions, except that the unbounded region for the
original graph is numbered 0. The polylines are written to a file whose name typically
ends in .1line with the format:

leftl I"ig]’lll

P11 " Pin,
EOR

left, right,
pP21 " DPon,

EOR

Here, left; and right; are the numbers of the regions to the left and right of the polyline as
one “‘travels’ on it from the starting vertex to the ending vertex; p;; represents vertex j
of polyline i and is given as a pair of coordinates, with longitude first (n; is the number
of vertices in polygon 7). White space may be used freely, and the final literal EOR indi-
cates the end of the polyline record.

The polygon file, typically named ending in . gon, has this format:

iy - i,
EOR
Loy = Lo,

EOR

Here, each [;; is either a polyline number or the negative of a polyline number. The
absolute values of /1y --- [y,, arethe numbers of the polylines that must be traced, in
order, to form the boundary of region 1. When the polyline number is positive, the ver-
tices of the polyline should be traced in the order given in the polyline file; when nega-
tive, the polyline should be traced from its end to its beginning. As before, the end of a
polygon record is indicated by the literal EOR.

Notice that it would be possible to detect a non-simply connected region (one with
holes) using this scheme because normally, in going from one polyline to the next, the
last vertex of one polyline is equal to the first of the next. If a break occurs, this indicates
that another piece of the boundary is being traced out. Currently our software only out-
puts the outer boundary of each region.

-11 -

6. Naming the regions

The final step in constructing a geographical database for S is to name each of the
regions defined in the polygon file. More than likely this must be done by hand, though
there are some possible ways to automate the process. For example, if we had a list of
cities, together with their country, latitude and longitude, we could apply the point-in-
polygon algorithm to determine which polygon each city was in and therefore identify
the country that the polygon corresponded to. Unfortunately, this didn’t work for WDBII
because most of the polygons corresponded to small islands.

In the end we resorted to naming by hand. We had our interactive graphics program
show the latitude and longitude as it zoomed in on the regions one by one, and we com-
pared what we saw with an atlas. This was a tedious process, and in retrospect we should
probably just have thrown out the smaller islands. In any case we were able to name all
but 295 of the regions, the unnamed ones all being small islands. Most of these were in
the following countries:

106 Maldives
35 Greenland
26 USSR

24 Chile

18 Bangladesh

At one point, being rather tired of poring over the atlas, we made a list of the remaining
islands, together with their centroid and area and mailed this to the S-news mailing list,
asking for help. Several people responded and contributed at least a hundred new names.
Late in the project we also obtained a copy of the Relational World Data Bank II (RWD-
BII), an updated version of WDBII with many place names added. Some of these gave
us new names, while others served as a check on the names we had already found.

There is a naming convention described in Becker and Wilks (1991) that turned out
to be useful and important in the world map. The convention is that the hierarchy among
regions is represented by names with several parts separated by colons. This is merely a
convention—none of the mapping software knows about it. It is useful, though, because
it is possible to choose a group of names by matching an initial substring of those names.
In naming the regions of the world, we always used the form country:name so that
each region was assigned to some country. Thus it is possible to plot all the parts of a
country quite easily. This is not without problems, however, as illustrated in the exam-
ples of section 8.

7. Problems

All through the process we have been describing we always kept the data at the
original resolution. The raw numbers were given to the nearest second, but empirically
the distance between successive vertices was about a kilometer, or roughly 40 seconds of
latitude. (The WDBII data came from a 1:2.5 million scale base map.) In any case, this
meant that the final database was huge—the ASCII version of the polyline file occupied
about 40 megabytes. This presented two problems. First, we didn’t want to distribute S
with such a large chunk of data, since the size of S itself was much less that this. Our
solution was to make the data available on the statlib server at CMU, where anyone can
retrieve it using anonymous ftp. Using some special purpose compression code we were

12 -

able to squeeze the entire package into about 4 megabytesy.

The second problem with the large amount of data is that S can be unhappy dealing
with such large datasets. In fact, when we tried simply: map ('world’), S used up too
much swap space and the operating system killed the process. To alleviate this problem,
we created a new geographical database that had the same topological structure, and
exactly the same polygon and name files. The polyline file was different, however,
because each polyline in the polyline file was a thinned version of the original, consisting
of fewer points but remaining close (in a certain sense) to the original polyline when
drawn. Our thinning algorithm is described in Becker and Wilks (1991). The new data-
base is called world.thin and is appropriate for maps that cover a large area of the
world. It consists of about 35,000 points as compared with about 2,000,000 for the
world version.

8. Examples

We now give several examples of maps made using the new database. At the top of
each example is the set of S expressions that produced the map. First, a map of France in
Figure 6. France itself comes out quite tiny due to the fact that the second argument to
the call to map() matched all the names the begin with France, including 23 French
islands around the world.

map('world’, ’france’)

Figure 6. A map of France including all its possessions.

To fix this situation, we added a new argument, exact=FALSE, to the map () func-
tion. If TRUE, only exact matches are allowed (recall from Becker and Wilks, 1991, that
all matches are anchored to the beginning of the names). Using this argument we may
now produce a nice map of France itself, as shown in Figure 7.

1S is now exclusively distributed by StatSci and is the base for their S-Plus product. The map
software and database organization in S-Plus is identical to what is described here.

~13-

map('world’, france’, exact=T)

Figure 7. Another map of France, this time without all the French islands.

As a third example, we show a map of Europe. The names in the world database
only have one extra level of implicit hierarchy, viz, the country of ownership. They do
not include, for example, the continent the the country belongs to. Hence, to make a
Europe map, we need explicitly to construct a vector of the names of the countries we
wish to view:

europe <- c("france", "belgium", "netherlands", "germany",
"denmark", "luxembourg", "spain", "portugal", "italy",
"switzerland", "austria", "ireland", "northern ireland",
"liechtenstein", "andorra", "great britain")

In Figure 8 we show a filled map of Europe, using random colors. Notice that we used
the world.thin database, because otherwise some of the output polygons had too many
sides for the PostScript printer to process.

As a final example, Figure 9 is a map of Antarctica, with the South Pole marked.

9. Further databases

As time goes on, we hope to be able to add other geographical databases to S for use
with the map () function. One relatively simple way to do this is through subsetting an
existing database. In Appendix B we show a short shell program (mostly using awk) that
will take a geographical database, together with a set of names from the names file, and
construct a new database that has just those regions given by the names. This could be
used to extract a Europe map, for instance.

Constructing databases from scratch, however, is hard, as illustrated by the process
described in this report. Of the three main steps, data cleaning, geometry construction
and region naming, only the second can be completely automated. In Appendix A we
give a set of simple tools that can aid in all three steps.

-14 -

map(‘world.thin’, europe, exact=T, fill=T, color=1:13)
map('world.thin’, europe, exact=T, add=T)

b]

Figure 8. A map of Europe using random colors. A real use would match the colors to some
data of interest. The second call to map () adds the outlines of the regions to give a crisper image.

map('world’,’antarctica’,proj="mercator’,orient=c(0,-90,0))
points(mapproject(0,-90),pch="+",cex=3)

Figure 9. A map of Antarctica, with a plus at the South Pole. Note the use of the orient
argument, and the implicit use of the previous projection in the call to mapproject.

We have already constructed two more geographical databases for S using some of
the tools described. One of these comes from data supplied by Mark Monmonier in the
Department of Geography at the University of Syracuse. He developed what he calls a
“‘visibility base map’’ of the USA, in which all states, even Rhode Island, are visible.

29

The map is schematic, and consists of polygons that are each ‘‘islands.

Figure 10

-15-

shows this map. We also received data describing the counties of the UK from Barry
Rowlingson in Lancaster, UK. This data was already quite clean, and required only two
small fixes to make it correct. It is illustrated in Figure 11.

N UAO

-

QW
VR

Figure 10. A “‘visibility base map’’ of the USA. This was produced with the S expression
map(’'state.vbm’).

References

Becker, Richard A., and Allan R. Wilks, "Maps in S", AT&T Bell Laboratories Statistical
Research Report No. 96, June 1991
(URL: http://www.research.att.com/areas/stat/doc/93.2.ps).

United States Department of Commerce, National Technical Information Service, WDB
IT General Users Guide, PB87-184818, World Data Bank II Set, PB87-184768.

Jack J. Dongarra and Eric Grosse, ‘‘Distribution of Mathematical Software Via Elec-
tronic Mail’’, Comm. ACM (1987) 30,403-407.

- 16 -

Figure 11. A county map of the United Kingdom. This was produced with the S command
map(‘uk’).

Appendix A

In this Appendix we describe a simple set of tools that can be used to help construct
a geographical database for S. All of these are freely available at
http://www.research.att.com/ rab/geo.html.

We describe the process of building a geographical database as a sequence of steps,
similar to the steps given in our earlier narrative.

Step 1: Produce a list of segments

Geographical data comes in many forms. The process we describe here assumes a
minimal amount of information in the data: an ASCII file in which each line describes
one line segment of the database. Each line should contain four numbers, the two coordi-
nates of one endpoint of a line segment and then the two coordinates of the other end-
point, all separated by white space. This is basically the least amount of information
needed to construct the database; in particular, it does not contain any information the
original data might contain about connectivity (such as we saw in the polyline

-17 -

descriptions of the WDBII data) or regions (such as comes with the Census boundary
data, in which each segment is given with the names of the regions to its left and right).

The mapping software in S can deal with two sorts of coordinate pairs; planar and
spherical. In the planar case, the elements of a coordinate pair can have any values, but
in the spherical case, each coordinate pair should represent a (longitude,latitude) position
on the sphere; i.e., the first coordinate of the pair should be the longitude of a point in
radians east of the prime meridian (so negative is west) and the second should be its lati-
tude in radians north of the equator. The preferred format is spherical, for then map pro-
jections can be used. Planar data might result, for example, as the output of a digitization
process. You need to decide at the outset what sort of database you are constructing, pla-
nar or spherical, and if the latter, you need to make sure that all the longitude coordinates
are between — 7t and 7, and that the latitude coordinates are between — /2 and /2.

In addition, you need to decide how precise your data is. You should think of each

x or y coordinate as a fixed-point real number with a certain fixed number of decimal dig-
its after the decimal point. As a guide for spherical data, four digits after the decimal
point gives an accuracy of about a kilometer in latitude. Also, one second of arc corre-
sponds to about 5 millionths of a radian, so if your data is really that precise, six digits
after the decimal point will suffice to represent it. We will refer to the number you pick
as prec. Before proceeding to the next step, you should round all numbers in your data
file to prec digits. We will assume that your ASCII file is named segfile for the pur-
pose of this discussion. Here is a little shell file, called round, that will do the job:

#!/bin/sh

prec=$1; shift;;

(echo $prec; cat "$@") |

awk '
function round(z) {
if(z > 0)
return int(z*factor+0.5)/factor
else
return -int(-z*factor+0.5)/factor
}
NR == 1 {
prec = $1
factor = 10 prec
}
NR > 1 {
printf "$.*f %.*f ¥.*f 2.*f\n",
prec, round($1l),
prec, round($2),
prec, round($3),
prec, round($4)
}l

If, for example, your value for prec were 4, you could say:

round 4 segfile > j
mv j segfile

Step 2: Remove duplicate and degenerate segments

Here is a little shell program called gdclean that reads its input either from a
named file or from standard input and prints on standard output a cleaned-up version of

- 18 -

the segments:

#!/bin/sh
sort "$@" |
uniq |

awk 'S1 != $3 || $2 1= s$4°

This will do three things: it will print all coordinates out in a standard form so that
strings representing equal numerical values will themselves be equal as strings; it will
elide any duplicate copies of segments that appear more than once; and it will elide any
degenerate segments, for which the two endpoints are the same. In what follows we will
assume that segfile has been replaced by the output of gdclean segfile:

gdclean segfile > j
mv j segfile

Step 3: Check for dangles (Constraint #1)

No vertex should appear with valence 1, according to Constraint #1. The following
short shell program, dangle, checks this condition, again reading its input either from a
named file or from its standard input:

#!/bin/sh
cat "se@" |
awk ' {

v = sprintf("%g %g", $1, $2); count[v]++; line[v] = NR

v = sprintf("%g %g", $3, $4); count[v]++; line[v] = NR
}
END {

for(v in count)

if(count[v] == 1)
print line([v], Vv

}r

The output from dangle is a sequence of lines, each of which describes a violation of
Constraint #1. The format of an output line is three numbers giving the line number of a
segment in the input file, and then the coordinates of one of the vertices of that segment
that appeared only once in the input, and was therefore dangling. If both endpoints of the
segment are dangling (an isolated segment), there will be two output lines, one for each
vertex.

If there are dangles, they must be repaired before proceeding with the next step. We
offer no tools for this activity, though the main body of this paper gives some ideas about
how to proceed.

dangle segfile > dangles
now deal with each line of dangles and fix segfile

Step 4: Check for illegal intersections (Constraint #2)

The second Constraint says that segments may only intersect in a common endpoint.
The C program intersect.c (not reproduced here so as to save space) will check this
constraint. It reads the named file or its standard input for a list of segments and pro-
duces as output a sequence of lines describing illegal intersections. Each such line con-
sists of a pair of segment numbers (line numbers in the input file) of segments that

-19-

intersect illegally, together with a verbal description of the type of intersection.

The intersect program expects its arguments to be integers; this allows the seg-
ment intersection code to work precisely, with no need for a fuzz factor (it will actually
work with arbitrary floating-point input, but it may flag spurious intersections or miss
others). Since the segfile was rewritten in Step 1 to have a constant number prec dec-
imal digits after the decimal point for each number, it can easily be turned into integers
by merely eliding the decimal points, as in

sed 's/.//g’ segfile | intersect

It is important to note that this trick (of eliding the decimal point) will only work if the
numbers in segfile all have the same number of digits after the decimal point. This will
be true if the round shell file was used, as recommended in Step 1.

The intersection code will always give correct answers if the range of x-values and
the range of y-values are not too large. The definition of "too large" depends on the
floating-point hardware, but with IEEE arithmetic, it is the 25th power of 2, or 33554432.
In other words, as long as the difference between the smallest and largest x-values in the
input to intersect is less that 33554432, and the same for the y-values, intersect
will operate correctly. This number would allow a value of 7 for prec for spherical data
(since it is larger by a tad than the number of ten-millionths in radians), which would
allow segments to span just 4 meters on the surface of the earth; this should be sufficient
accuracy for any spherical database.

Bad intersetions must be repaired before proceeding, and we offer no tools to aid in
this process.

Step 5: Build the database files

At this point it is assumed that segfile contains a set of segments with no dupli-
cates, no degenerate segments, no dangles and no illegal intersections. Note that it may
be necessary to do Steps 2, 3 and 4 several times until this is true.

The next step is to create ASCII files for the geographical database in the format
detailed earlier in Section 5. The C program gdbuild.c can be used for this purpose. It
expects to read on its standard input the clean data, but in a new format. The new format
looks like this:

nv
vertex 0

vertex nv-1

ne

edge 0

edge ne-1
The first line gives the number of unique vertices among the segments and then each of
those vertices is listed once. Next the number of edges (segments) is given, followed by
the segments themselves. The difference between an edge and a segment is that the edge
is a pair of vertex numbers (according to the scheme established in the first part of the
input), not four coordinates. Here is the shell program gdgraph to change the segfile
into the new format:

-20 -

#1/bin/sh
cat "s@" |
awk
function vertex(x,y) {
s =x""y
n = v[s]
if(n == "") {
n = v[s] = nv
c[nv] = s
nv++
}
return n
}
BEGIN {
nv = ne = 0
}
{
va[ne] = vertex($1,$2)
vb[ne] = vertex($3,54)
ne++
}
END {
print nv
for(i = 0; i < nv; i++)
print c[i]
print ne
for(i = 0; i < ne; i++)
print va[i], vb[i]
}

The gdbuild program reads data in the new format on its standard input. It takes a
single argument, as in:

gdgraph < segfile | gdbuild foo

where foo is the name of the database being created. Its output is two files, foo.line
and foo.gon, containing the polyline and polygon information in ASCII.

Step 6: Make the binary database files

The binary versions of the polyline and polygon files are a simple transformation of
the ASCII versions, and are produced with the Lmake and Gmake programs normally dis-
tributed with S or Splus. For completeness, their source code, Lmake.c and Gmake.c is
included in the archive mentioned earlier.

The syntax of Lmake is this:
Lmake precision type output-type input-file output-file

Lmake can convert from ASCII to binary or from binary to ASCII; which one it does is
controlled by the output-type argument. If output-type is b a binary file is pro-
duced (input-file names an ASCII file) and if output-type is a an ASCII file is
produced (input-file names a binary file).

The precision argument may be ignored, as it refers to the output precision (actu-
ally the number of places after the decimal point) of the printed numbers when an ASCII
file is being produced; you can set it to anything when producing the binary file. (You
would use this argument when producing an ASCII version of the database to ship to

-21 -

someone else, for example. In that case, a good value for precision would be the
value you chose previously for prec.)

The database format allows the polyline file to record coordinates on the plane or on
the sphere; it is only the latter type of data that will work with map projections. If your
input data is spherical, the first coordinate of each coordinate pair should be the longitude
of a point in degrees east of the prime meridian (so negative is west) and the second
should be its latitude in degrees north of the equator. You indicate this by calling Lmake
with a value of s for the type argument. Otherwise, use p. The latter might be the case
if your data were the raw output from a digitization process, for example.

Gmake is a little simpler than Lmake. Its syntax is:
Gmake output-type input-file output-file output-line-file

where the output-type is as before. The reason that Gmake requires the name of the
output file from the call to Lmake is that it will compute a bounding box for each poly-
gon by looking at the bounding boxes of its constituent polylines, and this information is
in the polyline file.

Since the map () function expects binary polyline files to have an extension .L and
binary polygon files to have an extension .G, a typical pair of calls to these programs
might look like this:

Imake 0 s b foo.line foo.L
Gmake b foo.gon foo.G foo.L

Step 7: Create a dummy name file
This is an easy one; here is the shell file protoname:

#!/bin/sh
awk '$0 == "EOR" {print ++n}’ |
sed 's/.*/polygon &@&/' |
tr '@’ '\011’
Usage is:
protoname < foo.gon > foo.N

This will give polygon 20, for example, the unimaginative name polygon 20. To do
better than this we proceed to:

Step 8: Name the regions

There is a pair of S functions to aid in naming the regions, now that the geometric
part of the database is built. First the function pip () (for Point In Polygon) takes a vec-
tor of x values, a parallel vector of y values and the name of a database (' foo’ in our
example) and returns the polygon numbers of the polygons containing the given points.
The returned polygon number for a point is O if no region contains the point and it is —1 if
the point was so close to the boundary of a region that it was hard to tell which region it
was in. Pip() is just a call to a C routine that resides in the C file mapget.c, and this
file also contains some of the other routines used in the mapping software. To use it, you
will have to load the code in mapget.c with your S executable, either statically or

-22 .

dynamically.

Incidentally, if you set the shell environment variable S MAP_DATA DIR to point to
the directory in which you are creating this database, the code in mapget.c will look
there instead of its usual place, which is $SHOME/library/maps/data.

The other function, gdname (), uses pip () to name the regions interactively. It is
a simple loop that draws the full map, prompts for graphical input, draws a blowup of the
polygon selected and prompts for a name for that region. Its return value is a list giving
the locations pointed at so far, together with the names that have been associated with
their polygons. This list may be given as the second argument to gdname () to initialize
that data in a subsequent naming session. So you can do something like this:

interactively name some things until you need a break; when
you are prompted to point and click at a region, just give
the device’s standard indication of end-of-graphical-input
> z <- gdname("foo")

start from where you left off ...

> z <- gdname("foo", z)

The gdname () function is quite simple, and could be made fancier in a number of
ways. But it should serve the purpose as it stands. When you have named all the regions
(and saved the result in, say, z), you can now turn this into a more meaningful names file:

cat (paste(z$name,seq(z$name),sep="\t"),sep="\n",file="foo.N")

That’s it! You now have the three files foo.L, foo.G, and foo.N that completely
describe the foo database. You can either install these in the standard place, or set your
S_MAP DATA DIR variable when you want to use foo.

Here is a brief recap of the commands described above. First, in the shell:

produce segfile, a list of segments, one per line
round 4 segfile | gdclean > j

mv j segfile

dangle segfile > dangles

deal with each line of dangles and fix segfile

sed ’'s/.//g’' segfile | intersect > intersections

deal with each line of intersections and fix segfile,
then make sure that there are still no dangles
gdgraph < segfile | gdbuild foo

Lmake 0 s b foo.line foo.L

Gmake b foo.gon foo.G foo.L

protoname < foo.gon > foo.N

set environment variable S MAP DATA DIR to point to current directory
load mapget.c code into S

and then in S:

z <- gdname("foo")
cat (paste(z$name,seq(z$name),sep="\t"),sep="\n",file="foo.N")

_23 .-

Appendix B

Also included with the code mentioned in Appendix A is a shell script, called sub-
gdb, to extract part of a geographical database and use the data to create a new one. The
two input arguments are the names of the old and new databases. The numbers of the
regions to be extracted are read on the standard input. The result of running the script is
three files: a .line file,a .gon file and a .N file. Lmake and Gmake must then be used
to create the binary .Land .G files.

For example, suppose we wish to make a database for just Europe using the europe
variable that we created earlier as a list of the coutries that should be in the database. The
ASCII files can be created with

echo "cat(mapname(’'world’,europe),sep='\n’)" | S |
subgdb $SHOME/library/maps/data/world europe
(The mapname () function is used by map () to turn region names into region numbers).
This creates the files europe.line and europe.gon in the current directory, and the
binary versions can be produced with:

$SHOME/library/maps/Lmake 4 s b europe.line europe.L
$SHOME/library/maps/Gmake b europe.gon europe.G europe.L

Afterward, map("europe") will access the new database. Don’t forget to set the
S_MAP DATA DIR environment variable if the new data does not reside in the standard
place for map data (as described in Appendix A.)

