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Introduction
History I

History
I The term tensor comes from the Latin “tendere”, which means “to

stretch.”

I In 1822 Cauchy introduced the Cauchy stress tensor in continuum
mechanics;

I In 1861 Riemann created the Riemann curvature tensor in geometry,

I Neither Cauchn nor Riemann used the term tensor, which was
introduced later around 1900 (next slides).
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Introduction
History II

History
I In 1884, Gibbs introduced tensor products of vectors in R3 with the

label “indeterminate product” and applied it to study strain on a body.
He extended the indeterminate product to n dimensions in 1886 a.

I Voigt used tensors to describe stress and strain on crystals in 1898, and
the term tensor first appeared with its modern physical meaning there.

I In geometry Ricci used tensors in the late 1800s and his 1901 paper
with Levi-Civita (in English) was crucial in Einstein’s work on general
relativity.

I Wide use of the term “tensor” in physics and math is due to Einstein;

a“Elements of Vector Analysis Arranged for the Use of Students in Physics,”
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Introduction
History III

History
I Ricci and Levi-Civita called tensors by the bland name “systems”.

I The notation⊗ is due toMurray and Von Neumann in 1936 for tensor
products (they wrote “direct products”) of Hilbert spaces.

I The tensor product of abelian groups G and H, with that name but
written as G ◦ H instead of G⊗ H, is due to Whitney in 1938.

I Tensor products of modules over a commutative ring are due to
Bourbaki in 1948. a

asee [0].
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Introduction
High dimensional arrays
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Introduction
Example: 3rd order Tensor

Maryam Bagherian |



8

Introduction
Example: 4th order Tensor

Figure: Functional magnetic resonance imaging (fMRI) with front view, side view, and top view.

1
1Source: Spacekime Analytics (Time Complexity and Inferential Uncertainty)
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Introduction
Subarrays

Definition (Tensor subarrays)
Analogous to row and column of the matrices, we may define tensor fiber
and slice as following:

I Fiber: Fibers are defined by fixing every index of the tensor but one.
I Slice: Slices are two-dimensional sections of a tensor, defined by fixing

all but two indices.
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Introduction
Fibers & Slices
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Tensor Rank
Definition

One may find several definition for the rank of a tensor. In general, the rank
of a tensor is defined as following:

Definition (Rank of a tensor)
The rank of a tensor X is the minimal number of rank-1 tensors that yield X
in a linear combination.

Definition (Order of a tensor)
Number of modes is called order of the tensor. For instance, X ∈ RI×J×K×L

is a tensor of order 4 (a.k.a 4-way tensor, 4th order tensor).

I The mode-n rank of a tensor X is the dimension of the subspace
spanned by its mode-n vectors.

I The mode-n rank of a higher-order tensor is the obvious generalization
of the column (row) rank of a matrix.
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Tensor Rank
Remarks

Remark (Rank of a tensor)
I Even for third order tensors, the problem of finding the rank of the

tenor is NP-hard. “Approximation” is the best we can do.
I We know some upper bound for the rank of the tensor. For instance, for

a tensor X ∈ RI×J×K, the rank of the tensor X is never more than

min{IJ, IK, JK}.

2

2NP: Non-deterministic Polynomial-time hard. You may see: Hastad, Johan. "Tensor rank is
NP-Complete." In International Colloquium on Automata, Languages, and Programming, pp.
451-460. Springer, Berlin, Heidelberg, 1989.
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Tensor Completion

Tensor Completion
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Tensor Completion
Definition

Definition (Completion Problem)
In general, the task of filling in the missing entries of a partially observed
array is called completion task. One of the variants of the completion
problem is to find the lowest rank array that matches the partially observed
one and is called low rank completion problem.

Low rank is often a necessary hypothesis to restrict the degree of freedoms
of the missing entries.
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Tensor Completion
LR Tensor Completion

Definition (Low-Rank Tensor Completion Problem)
Let a data tensor X and the index set Ω denoting the indices of
observations be given. The completion task can be formulated as the
following well-known optimization problem:

min
S

rank(S)

s.t. ΩX = ΩS ,

where S is the completed low rank tensor w.r.t. X .
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Tensor Completion
Remarks

Remark
The completion optimization problem is non-convex, since the function
rank(·) is non-convex. A common approach is to use a proper norm as a
convex relaxation of the problem to to approximate the rank of the tensor.
Therefore, we can instead minimize the following objective:

min
S

‖S‖µ

s.t. ΩX = ΩS ,

where ‖ · ‖µ is a norm which has to be identified and S is the completed low
rank tensor w.r.t. X .
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Tensor Completion
Approaches

Remark (A few examples for further studies)
I Decomposition Based Approaches (we will see them in the next

section!)
I Trace Norm Based Approaches :

I A Simple Low Rank Tensor Completion (SILRTC)
I High Accuracy Low Rank Tensor Completion (HALRTC): similar to SILRTC

but using ADMM
I Other Variants

I Non-Negative Constrained Approaches
I Robust Tensor Completion Methods
I Riemannian Optimization

3

3For more details you may refer to: Song et al. "Tensor completion algorithms in big data
analytics." ACM Transactions on Knowledge Discovery from Data (TKDD) 13, no. 1 (2019): 1-48.
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Tensor Decomposition

Tensor Decomposition
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Tensor Decomposition
Tensor Decomposition

Remark
I Tensor decompositions (a.k.a factorization) are the new matrix

factorizations!
One may categorize them into two main classes:

I CP-based models
I Tucker-based models

I They can be unique under certain conditions.
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Tensor Decomposition
Weierstrass Theorem

Theorem (Weierstrass)
A general tensor X of the size n× n× 2 has a “unique” tensor
decomposition as a sum of n decomposable tensors

Note: The decomposition is unique up to reordering the summands.
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Tensor Decomposition
CP Decomposition

CP Decomposition
I Classification
I Denoising
I Image compression and classification
I etc.
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CP Decomposition
Definition

Definition (CP decomposition)
A canonical or parallel factor decomposition CANDECOMP/PARAFAC
Decomposition (CP decomposition) decomposes a tensor into linear
combination of rank-1 components. Given a tensor X ∈ RI1×···×IN , CP
decomposition writes the tensor as

X ≈
R∑
r=1

u(1)r ◦ · · · ◦ u(N)r ,

where vector u(n)r ∈ RIn .
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CP Decomposition
Definition

Similar to the outer product of two vectors, we may define:

Definition (The outer product)
Given two tensors X ∈ RI1×I2···×IN and Y ∈ RJ1×J2···×JM (not necessarily of
the same size), denoted by “◦”, the outer product of X and Y results in a
tensor of the size (I1, I2, · · · , IN, J1, J2, · · · , JM) and is defined as:

(X ◦ Y)i1 i2···iNj1j2···jM = xi1 i2···iN yj1j2···jM .
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CP Decomposition
Remarks

Remark (On CP decomposition)
I One way to find/approximate the rank of a tensor is the number R in CP

decomposition of the tensor.
I Unlike matrix factorization, CP decomposition may be unique under a

mild rank condition:

Theorem (Kruskal Condition)
For a three-way tensor in X ∈ CI×J×K, the PARAFAC decomposition is
essentially unique if

2R ≤ rankk(v1) + rankk(v2) + rankk(v3)− 2,

where rankk(·) denotes the Kruskal rank.
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CP Decomposition
Importance

Remark (Why uniqueness is important?)
I Consider Principle Component Analysis (PCA):

I “If two or more roots [eigenvalues] are equal, the directions of the
associated axes are not unique and may be chosen in an infinity of
orthogonal positions.” (Morrison (1990, Def. 8.3).)

I In order to make sense of the principal components, they must be unique
otherwise they are not more than random axes, and may not describe
anything that is meaningful;

I Consider Non-negative Matrix Factorization (NMF):
I NMF is, in general, non-unique. One can inquire about existence and

uniqueness of NMF without any other side information;
I There is always the question of whether or not these true latent factors

are the only interpretation of the data, or alternative ones exist.

Maryam Bagherian |



26

CP Decomposition
Approaches

The algorithms to compute the CP decomposition minimize the norm of the
difference between the actual tensor, X , and the approximation resulting
from the potential decomposition, which we denote X̂ . In particular, we
look to solve the following optimization problem:

Definition

min
{u(n)}Nn=1

∥∥X − R∑
r=1

λr u
(1)
r ◦ u(2)r · · · ◦ u(N)r

∥∥
F

for some regularization scalar λr.
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CP Decomposition
Remark

Remark
The CP decomposition is sometimes expressed in the form of factor matrices
where the vectors from the rank one tensor components are combined to
form factor matrices. For the decomposition expression shown in the
previous slide, the factor matrices {A,B, C} will be formed as
A = [a1 a2 · · · aR], where R is the number of components.
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CP Decomposition
Remark

Remark
I The most popular algorithm for CP decomposition, called Alternating

Least Squares (CP–ALS)
I It matricizes the tensor, X , and arranges the factor vectors into columns

of matrices. It then alternates between solving for each of the matrices
until the desired stopping criterion is achieved.

I There are two other main group of algorithms for CP decomposition:
I Block descent algorithms

I It update whole factor matrices at each step
I Power methods

I greedy algorithms that perform ALS-type updates on one factor vector at a
time and results in a series of rank one approximations
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Tucker Decomposition

Tucker Decomposition
I Image compression and classification
I Dimensionality reduction
I Edge computing
I etc.
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Tucker Decomposition
Definition

Definition (Tucker Decomposition)
Let X ∈ RI1×···×IN be an N-mode tensor. Tucker method decomposes tensor
X in to a core tensor

G ∈ Ri1×···×iN , s.t. ∀n, in ≤ In,

and factor matrices U (n) ∈ RIn×in , satisfying

X ≈ G × {U} = G ×1 U(1) ×2 U(2) · · · ×N U(N).
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Tucker Decomposition
Remarks

Remark
The Tucker decomposition generalizes principal component analysis for
tensors. That is, it takes a tensor X ∈ RI×J×K, let say 3-way tensor, and
breaks it down into:

I a smaller “core” tensor G ∈ Ri×j×k, with i ≤ I, j ≤ J, k ≤ K,
which is transformed along each mode by factor matrices

I U(1) ∈ RI×i, U(2) ∈ RJ×j, and U(3) ∈ RK×k,
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Tucker Decomposition
Optimization Problem

Definition
For an order-3 tensor, the Tucker decomposition is written as

min
G,{U(n)}3n=1

∥∥X − G ×1 U(1) ×2 U(2) ×3 U(3)∥∥
F.

Remark
I Warning: Tucker decomposition is NOT unique! (Why?)
I Tucker decomposition is used as a modelling tool.
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Tucker Decomposition

Remark
I The most popular Tucker decomposition algorithm, called Higher Order

Singular Value Decomposition (HOSVD)
I It works with the matricization of this problem and solves for each factor

matrix in turn.
I It is not an iterative method

I There are two other main group of algorithms for Tucker
decomposition:

I Tensor sketching
I Parallelization
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Tucker Decomposition
SVD

Singular Value Decomposition (SVD):
I SVD is one of the most important tools in multivariate analysis.
I Goal: Find the underlying low-rank structure from the data matrix
I Closely related to Principal component analysis (PCA): Find the

one/multiple directions that explain most of the variance.

4

4Figure credit: Anru Zhang
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Tucker Decomposition
HOSVD

Higher Order Singular Value Decomposition (HOSVD):
I Historically, much of the interest in higher-order SVDs was driven by

the need to analyse empirical data, especially in psychometrics and
chemometrics.

I The HOSVD can be built from several SVDs (see the next slide)

5

5Figure credit: Anru Zhang
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Tucker Decomposition
HOSVD

Remark (HOSVD as generalization of SVD)
Let tensor X ∈ RI1×···×IN be given.

I . Construct the mode n matricization of tensor X , X(n), now we have a
matrix to work with!

II . Compute the singular value decomposition (SVD) for matrix X(n), that
is

X(n) = UnΣnV>n ,

III . Store the left singular values Un

IV . The core tensor G is then the projection of X onto the tensor basis
formed by the factor matrices {Un}Nn=1, i.e.,

G = X
N⊗

n=1

U>n .
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Applications

Tensor Recovery and Tensor Reconstruction

Maryam Bagherian |



38

Tensor Recovery and Tensor Reconstruction
Definition

Definition (Tensor Reconstruction )
Given a data tensor X , the aim of finding an unknown tensor Z , that caries
the decomposition structure of X , is called tensor reconstruction.

Definition (Tensor Recovery )
A tensor reconstruction based on completion methods is called tensor
recovery.
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Distance Metric Learning

Distance Metric Learning
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Distance Metric Learning
History

Definition (Distance Metric Learning)
Distance metric learning is a branch of machine learning that aims to learn
distances from the data instead of using familiar distances.

Remark
Similarity-based learning algorithms are among the earliest used in the field
of ML. To name a few early applications: k-Nearest Neighbors (k-NN) rule,
Clustering: k-means algorithm and etc.
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Distance Metric Learning
why and What for?

Remark
I To measure the similarity between data, it is necessary to introduce a

distance;
I There is an infinite number of distances we can work with, and not all

of them will adapt properly to our data;
I Distance metric learning arises in algorithms that are capable of

searching for distances that are able to capture features or
relationships hidden in data.
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Distance Metric Learning
Distances

Remark
I In a K-dimensional Euclidean space, the squared distances can then be

computed as
d(a, b) = ‖L(a− b)‖2F

where L is a surjective linear transformation.
I The distance may also be expressed in terms of a positive semidefinite

square matrixM = LL>.
I In case L is also surjective, which results inM being full rank, the matrix

M parametrizes the distance d.
I MatrixM is referred to as Mahalanobis metric. In Gaussian

distributions matrixM plays the role of the inverse covariance matrix.
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Distance Metric Learning
Mahalanobis Distance

Remark
I Mahalanobis distances come from the (semi-)dot products in Rd

defined by the positive semidefinite matrixM.
I WhenM is full-rank, Mahalanobis distances are proper distances.

Otherwise, they are pseudodistances.
I The Euclidean usual distance is a particular example of a Mahalanobis

distance, whenM is the identity matrix I.
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Distance Metric Learning
Mahalanobis Distance

Remark
I Mahalanobis distances have additional properties specific to distances

over normed spaces,
I Homogeneousness: d(ax, ay) = |a| d(x, y), for a ∈ R, x, y ∈ Rd,
I Translation invariance: d(x, y) = d(x+ z, y + z), for x, y, z ∈ Rd,
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Distance Metric Learning
Mahalanobis Distance for Tensors

Definition
Let Xi ∈ RN1×N2×···×NK be input sample tensors, for some i ∈ N. Consider
the multilinear transformation

ϕ : RN1×N2×···×NK → RN1×N2×···×NK

ϕ(X ) = X ×1 L(1) ×2 L(2) · · · ×K L(K),

where the square matrices L(`) ∈ RN`×N` , for ` = 1, · · · , K, are called the
`-mode matrices. The squared Mahalanobis distance can be computed as:

dM(Xi,Xj) :=
∥∥(Xi −Xj)×1 L(1) ×2 L(2) · · · ×K L(K)

∥∥2
F,
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Distance Metric Learning
Mahalanobis Distance for Tensors

Lemma
Assuming the setting in previous definition, then

dM(Xi,Xj) := Tr
(
L̂(`)(Xi − Xj)(`) L 6=`⊗ L̂(k)

)
(Xi − Xj)>(`)

)
,

where⊗ denotes Kronecker product, and for each `, X(`) denotes the `-th
matricization of tensor X , with

L̂(`) = L(`)
>
L(`),

and
L6=`⊗ = L̂(K) ⊗ · · · L̂(`+1) ⊗ L̂(`−1) ⊗ · · · ⊗ L̂(1).

Here, if L(`), for ` = 1, · · · , K are orthogonal matrices ,the distance recovers
Euclidean distance.
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Distance Metric Learning
Example

Example (Improve the performance of distance-based
classifiers)

I Suppose we have a dataset in the plane, where data can belong to
three different classes, whose regions are defined by parallel lines. We
want to classify new samples using the one nearest neighbor classifier.

I Euclidean distance (left): because there is a greater separation
between each sample in class B and class C than there is between the
regions.

I An adequate distance and try to classify with the nearest neighbor
classifier again, we obtain much more effective classification regions,
as shown in the center image.

I Learning a metric is equivalent to learning a linear map and to use
Euclidean distance in the transformed space.

I We can also observe that data are being projected, except for precision
errors, onto a line, thus we are also reducing the dimensionality of the
dataset.
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Distance Metric Learning
Example

Example (Improve the performance of distance-based
classifiers)

a

aReference: [9]
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Applications

Examples and Applications
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Applications
CP Decomposition

CP Model:

6

6Figure credit: Anru Zhang
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Applications
Tucker Decomposition

7

7Figure credit: Anru Zhang
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Applications
CP Decomposition

Example (CP for Simultaneous Analysis of Neurons, Time, and
Trial )

Figure: Neural activity data represented in matrix and tensor formats. (A) Activity of
a neural population on a single trial. (B) Activity of a neural population across
multiple trials.

8
8Credit: Alex Willimas, “Notes on Tensor Decompositions”, 2016.Maryam Bagherian |
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Applications
CP Decomposition

Example (CP for Simultaneous Analysis of Neurons, Time, and
Trial )

Figure: Past work could only look at 2 factors at once: Time and Neuron, Trial and
Neuron, etc.

9
9Credit: Kolda [1]
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Applications
Tucker Decomposition

Example
I For instance, given a three-way (or higher way) data, it is used to

model the data by means of relatively small numbers of components
for each mode.

I Components are linked to each other by a three- (or higher-) way core
array.

I The model parameters are estimated in such a way that, given fixed
numbers of components, the modelled data optimally resemble the
actual data in the least squares sense.

The model gives a summary of the information in the data, in the same way
as principal components analysis (PCA) does for two-way data.
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Applications
Tucker Decomposition

Example (Application in Image Compression)

10

10Credit: https : //iksinc.online/2018/05/02/understanding− tensors− and− tensor−
decompositions− part− 3/
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Applications
Tucker Decomposition

Example (Reduce Storage Bottleneck via Multiway
Tucker-based Compression)

11
11Credit: Kolda, Michigan Institute for Data Science (MIDAS) Seminar

Maryam Bagherian |



57

Applications
Tucker Decomposition

Example (Tensor Decomposition in Image Compression)
Source:http :

//tensorly.org/stable/autoexamples/decomposition/plotimagecompression.html
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Applications
Tensor Completion

Example (Tensor completion in Image Compression)
Source:https : //www.mdpi.com/2076− 3417/10/3/797/htm
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Applications
Tensor Completion

Example (Tucker completion for a cine cardiac MRI series)
Source:https : //arxiv.org/abs/1911.10454

Figure: Tucker and Dual Core completion results (third and fourth colums) for a cine
cardiac MRI series 192× 192× 8× 19 with 85 percent missing rate.
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Pitch to the “Demo”
TR-MLC

Simultaneous tensor recovery and reconstruction using metric learning
constraints (TR-MLC): more details during the “demo”.
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