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Review: Group representation theory

Invariance and Equivariance: ρ : G → GL(V ) is a group homomorphism ρ(g1g2) = ρ(g1)ρ(g2)

f is G - Invariant if f (ρ(g)x) = f (x), f is G - Equivariant if f (ρ(g)x) = ρ(g)f (x) ∀g ∈ G

▶ Invariance requires information compression quotienting out symmetries, equivariance means
information is transformed consistently.

Group actions (in statistical contexts):
1 Acting on group elements, G on G
2 Acting on (statistical) parameters in Rd , i.e., Tgx (V finite dimensional, ρ(g) invertible matrices)

▶ Example: 1D Location Scale family, Tg : θ → θg = aθ + b
3 Acting on functions f (Left regular representations), i.e., Lg f (g

′) = f (g−1g ′), f ∈ L2(G)1(V infinite)
▶ Example: Acting on Statistical estimators, Lg : Θ̂ → Θ̂, Lg θ̂(θ | x) = θ̂(T−1

g θ | x), θ ∈ Rd

Example - Spatial Rotational symmetry: SO(3) = {RTR = I , det(R) = 1,R ∈ R3×3}
1 Matrix composing with matrix (matrix product) defines G acting on G
2 Matrix (R = Tg = ρ(g)) acting on R3 is trivial. GL(V ) = GL(3,R) ≡ R3×3

3 SO(3) acting on estimators acts on the parameters inversely.
1Can also be defined for other L2 spaces Lg f (x) = f (T−1

g x), f ∈ L2(Rd ), x ∈ Rd
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Review: Deep Network Architecture

Two approaches to make deep network invariant/equivariant:

Data Augmentation Limitation

Architectural Design
▶ G−invariant inference framework: several equivariant functions followed by a invariant layer.

Common architectural designs:

1 MLP: Universal function approximators, no symmetry built in, generalization contingent on
training data distribution.

2 CNN: MLP with translational equivariance (segmentation)/invariance (classification). Equivariance
realized via translational weight sharing.

3 Discrete GCNN: Data augmentation made implicit in the architectural design, discrete indexing g
of the group G needed, weight sharing across G

f ∗G K (g) =
∑
h∈Rn

f (h)K (T−1
g h). Example: Scaling : (f ∗R>0 K )(p, λ) =

∑
q∈R2

f (p − q)K

(
1

λ
q

)
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Review: Deep Network Architecture

4 Steerable CNN: Does not need group sampling (discrete indexing) schemes, Information stored as
Fourier coefficients (Peter-Weyl Theorem for compact group G ) [8]

Forward : f̂ (ρℓ) = [FG f ]ℓ =

∫
G

f (g)ρℓ(g)dg ,Backward :
[
F−1

G f̂
]
ℓ
=

∑
ℓ

dρℓ
tr
[
f̂ (ρℓ)ρℓ(g

−1)
]
,

(1)
Steerable kernels satisfy kernel constraints: K (hx) = ρout(h)K (x)ρin(h

−1)

▶ SO(3) example: K (x) =
∑L

ℓ=0

∑ℓ
m=−ℓ c

ℓ
m(∥x∥)Y ℓ

m

(
x

∥x∥

)
,

▶ Equivariance: Y ℓ
m(R(θ, ϕ)) = ρℓ(R)Y ℓ

m(θ, ϕ), (θ, ϕ) ∈ S2,R ∈ SO(3), ρℓ ∈ R(2ℓ+1)×(2ℓ+1) are the
Wigner-D matrices. ρℓ = [Dℓ

−ℓ, ...,D
ℓ
−1,D

ℓ
0 , ...,D

ℓ
ℓ ], [D

ℓ
m(·)]m′ : SO(3) → R is Wigner-D function.

5 Seq to Seq Transformers: Non-convolutional Approach, attention mechanism is permutation
equivariant, unlike MLP the model weights are feature dependent w(X )
▶ Properties: Scaling laws [6], In context learning functional regression problem [4].
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Relaxing the equivariance constraint

Motivation: Material Impurity (Non-isotropicity for ∇2), physical non-ideality factors

X Y

||f (ρX (g)x)− fθ(ρX (g)x))||Y

x

ρX (g)x

f (x) ρY (g)f (x)

fθ(x)

ρY (g)fθ(x)

f (ρX (g)(x))
ϵE

Figure: The problem with approximating an approximate
G-equivariant function with G-equivariant function is
that the two red zig zag lines cannot be simultaneously
small. The solid lines stand for connections from
G-equivariant (fθ) inference. The dashed lines represent
approximate G-equivariant (f ) inferences.

Approximate Equivariance[7]/Invariance :
ϵ-approximate G -equivariant: ∀ g ∈ G and
∀ x ∈ X , ∥f (ρX (g)(x))− ρY (g)f (x)∥ ≤ ϵE
ϵ-approximate G -invariant: ∀ g ∈ G
and ∀ x ∈ X , ∥f (ρX (g)(x))− f (x)∥ ≤ ϵI

Lower Bound Error for approximate
equivariance inference with full equivariance
parametrization[7]
▶ fθ denotes the NN based G-equivariant
network and f be the approximate
equivariant framework. Assuming
the Lipschitz condition, ∥ρY (g)fθ(x)
−ρY (g)f (x)∥Y ≤ κ∥fθ(x)− f (x)∥Y .
Then, ∃x , ∥fθ(x)− f (x)∥ ≥ 1

1+κϵE
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Bridging Theory and Practice: Emergent approximate invariance

Approximate invariance can also emerge from noise and constraints (latent dimension).

Figure: A schematic of DL network auto-encoding-decoding of handwritten images and the large ABIDE dataset
along with identification of DL invariants that capture the intrinsic properties of the training data. This VAE
framework may be used to produce synthetic realizations resembling the original training data.
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Group Invariant Learning on Kreuzer Skarke Dataset

Work with Christian Ewert, Sumner Magruder, Vera Maiboroda, Pragya Singh, and Daniel Platt. 2

Problem: Regression R4×26 → Z+

▶ Symmetry Group: S4 × S26.
▶ Cardinality: 4!× 26! = 9.7× 1027

Data Augmentation impossible Arch-review

Models: CNN, Xgboost, Invariant MLP, (Vision)
Transformer, PointNet++, MLP with invariant features

Data Preprocessing: Original, Original (Random)
Permuted, Preprocessed, Preprocessed Permuted

Main Findings:
1 Approximately Invariant models outperform fully

invariant models
2 Group Invariant Preprocessing improves performance
3 Building group invariance improves performance Figure: Different Architectures across group

invariant preprocessing

2https://github.com/danielplatt/kreuzer-skarke-ML/blob/main/Group_Invariant_Kreuzer_Skarke.pdf
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Invariance, probabilistic symmetry and statistical inference

Discrete Case

▶ X1,X2,X3 ∼ Binomial(θ)
▶ Sample space X = {(x , y , z) | x , y , z ∈ {0, 1}}
▶ (Minimal) Sufficient Statistic S = x1 + x2 + x3
▶ S(x) induced partition X = C1

⋃ C2
⋃ C3

⋃ C4

C1 = {(0, 0, 0)}, SC1(x) = 0
C2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, SC2(x) = 1
C3 = {(0, 1, 1), (1, 1, 0), (1, 0, 1)}, SC3(x) = 2

C4 = {(1, 1, 1)}, SC4(x) = 3x

y

z

O

xy

f (x, y)
Continuous Case

▶ X1,X2 ∼ N (µ, σ2)

▶ Sample space: X = R2

▶ (Minimal) sufficient statistics:
Mean: Sµ = x1 + x2

Variance: Sσ2 = x21 + x22

▶ Sµ induced partition X =
⋃
t∈R

Ct
Ct = {(x , y) | x + y = t}

▶ Sσ2 induce X =
⋃

t∈R+

Ct , Ct = {(x , y) | x2 + y 2 = t}

Figure: Discrete and continuous case of sample space partition induced by sufficient statistics. (Left): The
sufficient statistic generates a partition of black, red, blue green dots. (Right): The sufficient statistic generates
a partition of red isocontours for the variance and blue isocontours for the mean parameter.

Probabilistic Symmetry is defined on random structures X∞ (random variables, random graphs,

random partitions,...). A random structure is symmetric to G if g(X )
d
= X ,∀X ∈ X∞, g ∈ G . The

canonical example being exchangeability [2].

Sufficiency describe information relevant to inference, Invariance introduces irrelevance and needs
to be quotient out.
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Metric Measure Symmetry & Measuring symmetry

Common symmetries in metric measures:

Reparametrization symmetry.
▶ Physical properties (Curve length, Regional areas, Solid volumes) is independent of coordinate
transformations.
▶ Canonical variable transform is coupled with a Jacobian term (r.v. Bivariate transform
fUV (u, v) = fXY (x(u, v), y(u, v))|J|). When the |J| factor is absorbed, the quantity is
reparametrization invariant (Fisher information, Mutual information).

Geometrical Transformation Symmetry
▶ Rotations (Cosine similarity, L2 logistic regression), Affine (Amari-Chentsov tensor[1])

Problem specific symmetries:
▶ Optimal policy invariance under reward shaping R̃ = R + F (x , a, x ′) = R + γϕ(x ′)− ϕ(x): This
non-classical invariance is generated from the Bellman objective function form.
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Measuring Symmetry

One can use Lie derivative to quantify how much symmetry is aligned/violated (Locally) by rearranging
the equivariance condition: [5]

ρ21(g)[f ](x) = ρ2(g)
−1f (ρ1(g))(x) (2)

The Lie derivative generated by a vector field Y can be expanded using the rewritten condition

LY (f ) = lim
t→0

ρ21(ϕ
t
Y )[f ]− f

t
= lim

t→0

ψ∗
exp(−tY ) ◦ f ◦ ψexp(tY ) − f

t
(3)

ϕtY is the local 1-parameter group generated by Y (flowing along the vector field Y with time t)

ψexp(tY ) : M → M is the manifold pushforward defined by the group action

ψ∗
exp(−tY ) : T

∗
ϕt
Y (p)

M → T ∗
pM is the pullback of the cotangent space. Namely, it pulls back the

cotangent space at ϕtY (p) to p

Yueyang Shen, Yupeng Zhang, Ivo Dinov Statistical Foundation of Group Invariance and Equivariance in Deep Network Learning 15 / 22



Optimization Practice [3]

−4 −2 0 2 4 −5

0

5−20

0

Figure: An illustration of a non-convex loss landscape
with radial symmetry. M: surface,M/G : black curve

Symmetries on the functional landscape often
entails non-convexity. In terms of optimizing
on the total space M or quotient space M/G

For first order Riemannian
gradient descent method, there is
no difference utilizing the quotient structure
or using the algorithm in the original space.

For second order methods, Newton’s method
would be catastrophic for optimizing the
loss in the original space M, since Newton’s
method solves step direction in one shot.

Using conjugate gradient to minimize
the second order expansion mitigates
the problem of solving an underdetermined
system when optimizing in original space M.

Yueyang Shen, Yupeng Zhang, Ivo Dinov Statistical Foundation of Group Invariance and Equivariance in Deep Network Learning 16 / 22



Overview

1 Mathematical Foundations
Review: Group (Representation) Theory, Deep Network Architectures
Relaxing the exact G -equivariant condition
Case Study: Group Invariance Case Study on Kreuzer Skarke Dataset

2 Statistical and Optimization practice under symmetry
Invariance, probabilistic symmetry and statistical inference
Optimization symmetry practice

3 Biomedical Applications & Spacekime Analytics

4 References

Yueyang Shen, Yupeng Zhang, Ivo Dinov Statistical Foundation of Group Invariance and Equivariance in Deep Network Learning 17 / 22



Biomedical Applications

Biomedical Datasets demonstrate various classical and non-classical invariances

Set data structure such as gene expression have permutation invariance

Modeling Spatiotemporal measurements could be invariant to
1 Spatial rotation, irrespective of the machine orientation selected (fMRI imaging, 2D pathology slices

of 3D anatomy).
2 Temporal translations. Same stimuli (Experimental condition) should give rise to same activation

patterns across measurement taken times.

▶ More generally, this needs to be modeled as gauge invariance: Instrument changes may lead to
measurement transformations (i.e., gauge transformations) tracking the same quantity between
different devices, which subject to rigorous calibration is expected to yield stable inference, i.e.,
inference invariance/equivariance).

fMRI preprocessing (e.g., registering the hypervolumetric data into a common 3D/4D
spatiotemporal) atlas space to align the fMRI data and facilitate a form of inference invariance can
be regarded as the “group invariant” preprocessing step.
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Prospective study: Invariance, neuroimaging and spacekime analytics
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Prospective study: Invariance, neuroimaging and spacekime analytics
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