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Complex-Time (Kime)
At a given spatial location, x, complex time (kime) is defined by x = re? € C, where:
U the magnitude represents the longitudinal events order (r > 0) and characterizes
the longitudinal displacement in time, and
U event phase (—m < @ < m) is an angular displacement, event direction, or random
sampling index
There are multiple alternative parametrizations of kime in the complex plane
Space-kime manifold is R® x C:
(x, k1) and (x, k,) have the same spacetime representation, but different
spacekime coordinates,
(x, k1) and (y, k1) share the same kime, but represent different spatial locations,
(x, k) and (x, k3) have the same spatial-locations and kime-directions, but
appear sequentially in order, r, < 1.

Rationale for Time - Kime Extension

O Math - Time is a special case of kime, k = |k|e'? where ¢ = 0 (nil-phase)
« Rt is algebraically a multiplicative (algebraic) group, with multiplicative unity (identity) = 1,

multiplicative inverses t 71 = % and associativity law t; X (t; X t3) = (t; X t3) X t3
The time domain (R*) is not a complete algebraic field w.rt. (+, X):
o Additive unity (0), element additive inverse (—t): t + (—t) = 0; is outside R* (time-domain)

o x%+ 1 = 0 has no solutions in time (or in R) ....
Compatible operations > Group(+)

Group(X) € Ring( (+,%) C Field (+,%)

— T
associative & distributive

Classical time (R") is a positive cone over the field of the real numbers (R)

Time (R*) forms a subgroup of the multiplicative group of the reals

Whereas kime (C) is an algebraically closed prime field that naturally extends time

Time is ordered but kime is not! Yet, the kime magnitude preserves the intrinsic time order

Kime (C) represents the smallest natural extension of time, as a complete filed that agrees with time
The time group is closed under addition, multiplication, and division (but not subtraction). It has the
topology of R and the structure of a multiplicative topological group = additive topological semigroup

O Physics -
O Problem of time ... (
O R and C Hilbert-space quantum theories make different predictions ( )

O Al/Data Science — Random IID sampling, Bayesian reps, tensor modeling of C kimesurfaces, novel analytics
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Uncertainty in 5D Spacekime

5D Space-Time-Matter Consortium showed that in a 5D universe with an extra time
dimension, particle spacetime motion may be slightly modified by an extra force to
produce a correlation between the momentum and position similar to the uncertainty
relation in quantum mechanics

One component of this additional force is parallel to the 4-velocity and explains the
intrinsic Heisenberg uncertainty relation in the lower 4D spacetime embedding

We can represent classical 4D spacetime Heisenberg uncertainty as a reduction of
Einstein-like 5D deterministic dynamics

(Paul Wesson) “Heisenberg was right in 4D, because Einstein was right in 5D”
D-dimensional “generating” space foliated by a family of (D — 1) hypersurfaces

Space (x) Foliation of Spacekime (Radial, t) Time-Foliation of Spacekime (Angular, ¢) Phase-Foliation of Kime
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Ultrahyperbolic Wave Equation —
Cauchy Initial Data

O Nonlocal constraints yield the existence, uniqueness & stability of local and global
solutions to the ultrahyperbolic wave equation under Cauchy initial data ...
iy = u( 5 ,O,K_l) = flx,k_1)
X€Ds  KED:
Uy = O, u(x,0,k_1) = g(x, Kc_1)

T e
spatial Laplacian temporal Laplacian initial conditions (Cauchy Data)

ds dt
Z 0fu= Aulx, k) = Aau(x k) = Za,%iu,
i=1

where x = (xl,xz, .4.,,\'(1\) € R% and k = (Kl,KZ, ...,Kd() € R% are the Cartesian coordinates in the d space and d, time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints |&| = |ng_4] :

a0 = o= (2 1T = n112) 80§, 1) + sin (27 11 B2 = 01 F7)
C

n g
Uo\ _ (Tlo\ _ (Bo(En-1)) _ [ 2 n-1)
where y:(ul) i (ﬁl) y <ﬁ1(5»77—11)) 4 <0K|ﬁ(§‘ "‘1)).

u (x, Kl,K_l) =F @) (x, k) = J. (& 1y, m_q) X e2mHE) x p2milk_11-1) g dy_, |
A _

Dsx D¢

,(§,m-1)
2my/[§1% = I |?

c

-1

A Spacekime Solution to Wave Equation

U Math Generalizations:
Derived other spacekime
concepts: law of addition of
velocities, energy-momentum
conservation law, stability
conditions for particles moving in
spacekime, conditions for
nonzero rest particle mass, causal
structure of spacekime, and
solutions of the ultrahyperbolic
wave equation under Cauchy
initial data ...
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Math Foundations of Spacekime

Spacekime: (x, k) = (xl,xz,x3,c1c1 = CiC; = xS) =4
it 0 e D

Kevents (complex events): points (or states) in the

spacekime manifold X. Each kevent is defined by where (x =

(x,y,2)) it occurs in space, what is its causal longitudinal

order (r =] (x4)2+(x5)2), and in what kime-direction

(¢ = atan2(x>,x*)) it takes place

Spacekime interval (ds) is defined using the general
Minkowski 5 X 5 metric tensor

Spacekime Calculus of differentiation and integration
(defined using Wirtinger derivatives and path integration
Generalization of the equations of motion in spacekime
Lorentz transformation (between 2 spacekime inertial frames)
Solutions to ultrahyperbolic PDEs

Spacekime Calculus

U Kime Wirtinger derivative, 1% order kime-derivative at k = (r, P), z=(x+1iy):
af (2) d d = G d d
f()_ﬂ (_f_ _f) and f'(2) = fz) (_f+ _f)

dx ay ox ady
In Conjugate-pair basis: df = of + 0f = g—idz aF gdz‘
In Polar kime coordinates:

f'(k) = 6f(k) = %<c05<pg—f—%sm(pg—f— <sm<p(;—f+ coswgf>>

® af(la il of 1 af of 1 of
"(k) =———=—|cosog— ——sinp—+ |sing— +—cosp—
f ok 2 ¢ or r 4 dp 5 ar r i dp

e~ ‘P(af of

U Kime Wirtinger integration:
. . [ Z
Path-integral  lim Y34 (f (zin) (Zmar — zm)) = 6, f(2)dz.

|Zm+1—2Zml

Definite area integral: for Q. € C, f f(z)dzdz .

Indefinite integral: [ f(z)dzdz, df = afd e - L dz

2 afof _ ,of of
df_4dzdz 4dzdz'

The Laplacian in terms of conjugate pair coordmates isAf =




3/14/2024

(Many) Spacekime Open Math Problems

O Analyticity — study the holomorphic properties of the data/signals in Spacekime
Q Investigate the relation between time = kime transformations £ = {t € R - k € C } and the
analytical properties of the resulting kimesurfaces (f(K): C- (C) corresponding to the originally

observed time-series processes (f(t): Rt - R, C).
O This knowledge may enhance our understanding of, and potentially suggest novel,
Al/ML/statistical/data-science methods for modeling, prediction, inference or forecasting on

observed longitudinal data.

0 Ergodicity: Look at particle velocities in the 4D Minkowski spacetime (X), a measure space where gas
particles move spatially and evolve longitudinally in time. Let u = p, be a measure on X, f(x,t) €
L*(X, 1) be an integrable function (e.g., velocity of a particle), and T: X — X be a measure-preserving
transformation at position x € R3 and time t € R*.

U A pointwise ergodic theorem argues that in a measure theoretic sense, the average of f (e.g.,
velocity) over all particles in the gas system at a fixed time, f = E.(f) = [., f(x, t)du,, is equal to
the average f of just one particle (x) over the entire time span, .

5 . 1 ) =z
f=E(f) = lim (Z370f(T™)), ice, (show) f = f.
O u, is a prob measure and the transformation T™x represents the time starting with an initial

spatial location T°x = x. Investigate the ergodic properties of various transform in 5D spacekime:
+1

- _ i d ,:7\ li 1INy m d = =
f = ]EK(f) = [lx(X)ff(x‘%f’) HUx = tgl}n <Ezmzo< i f(T x,t, ¢) C[))) - [Ex(f) =

- kime averaging
space averaging

Bayesian Inference Simulation

U Simulation example using 2 random samples drawn from mixture distributions

each of ny, = ng = 10K observations
Q {X,:}4,, where X,; = 0.3U; + 0.7V;, U; ~ N(0,1) and V; ~ N(5,3), and
O {Xp,}2,, where Xg; = 0.4P; + 0.6Q;, P; ~ N(20,20) and Q; ~ N(100,30).
O The intensities of cohorts A and B are independent and follow different mixture
distributions. We’'ll split the first cohort (4) into training (C) and testing (D)
subgroups, and then

U Transform all four cohorts into Fourier k-space,

4 lteratively randomly sample single observations from the (training) cohort C,

U Reconstruct the data into spacetime using a single kime-magnitude value and
alternative kime-phase estimates derived from cohorts B, C, and D, and

O Compute the classical spacetime-derived population characteristics of cohort
A and compare them to their spacekime counterparts obtained using a single

C kime-magnitude paired with B, C, or D kime-phases.
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Bayesian Inference Representation

U0 Spacekime analytics based on a single spacetime observation x; can be thought of as a
type of Bayesian prior-predictive or posterior-predictive distribution estimation problem

O Prior predictive distribution of a new data point x; , marginalized over the prior —i.e., the
sampling distribution p(x;, |y) weight-averaged by the pure prior distribution):

p(x,l0") = fp(xjnlﬂ x _pUle) dy.

prior distribution

U Posterior predictive distribution of a new data point x; , marginalized over the posterior;
i.e., the sampling distribution p(x;, |y) weight-averaged by the posterior distribution:

p(x, |xi, 0") = fp(xjaly)x p(rlxi, @) dv.

posterior distribution

O The difference between these two predictive distributions is that
QO the posterior predictive distribution is updated by the observation X = {Xi,,} and the
hyperparameter, ¢ (phase aggregator),
O whereas the prior predictive distribution only relies on the values of the
hyperparameters that appear in the prior distribution

Bayesian Inference Simulation

Bayesian
simulated
spacekime
reconstructions
Samples from
the posterior
predictive

he distribution

Distributions Bivariate test statistic (

Test statistic (maximum) Test statistic (inter-quartile range, IQR

Relations between the empirical data distribution (dark blue) and samples
from the posterior predictive distribution, Bayesian simulated
spacekime reconstructions (B_'[Eﬁﬂ!)_
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Data—> Kime-Transforms - PDEs = Al

Time - Kime Transformation Wave equation Solutions (kime) dynamics  Prospective Data Science Applications

&
=

fMRI time-series ~ fMRI kime-surfaces Cross sections Volume rendering 3D p-value map Stat significance

Random Sampling & Kime-Phase Paradigm

U Kime phase distributions are mostly symmetric =» random observations = phase sampling

b[9[ 8] W jupdate1 v [siopt8 | v) i

Reresh Siats Tathe | ¢l mormattt) [Mess | =] [v-10 | =] 2 rtmormai ) Kime-Phases Circular distribution

tograms 300 Surmaries | Dstibotions

Density circular

\

vl

N=2 Bandwidth =25 Unit = radians




Mathematical-Physics = Data Science & Al

Physics Data/Neuro Sciences

A particle is a small localized object that An object is something that exists by itself, actually or
permits observations and characterization of | potentially, concretely or abstractly, physically or

its physical or chemical properties incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about A feature is a dynamic variable or an attribute about an
particles that can be measured object that can be measured

Particle state is an observable particle Datum is an observed quantitative or qualitative value,
characteristic (e.g., position, momentum) an instantiation, of a feature

Particle system is a collection of Problem, aka Computable Data Object, is a collection
independent particles and observable of independent objects and features, without
characteristics, in a closed system necessarily being associated with a priori hypotheses

Wave-function

Inference-function

Reference-Frame transforms (e.g., Lorentz) | Data transformations (e.g., wrangling, log-transform)
State of a system is an observed Dataset (data) is an observed instance of a set of
measurement of all particles ~ wavefunction | datum elements about the problem system, 0 = {X,Y}

A particle system is computable if (1) the
entire system is logical, consistent, complete
and (2) the unknown internal states of the
system don’t influence the computation
(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special
representation of a dataset which allows direct

application of computational processing, modeling,
analytics, or inference based on the observed dataset

Mathematical-Physics = Data Science & Al

Physics
Wavefunction

Wave equ problem:

Complex Solution:
IIJ(X, t) A Aei(kx—wt)
represents a
traveling wave,

where m =v.

GLM/SVM:

Data Science

Inference function - describing a solution to a specific data analytic system (a

problem). For example,

e Alinear (GLM) model represents a solution of a prediction inference
problem, ¥ = X, where the inference function quantifies the effects of all
independent features (X) on the dependent outcome (Y), data: 0 = {X,Y}:

P(0) = p(X.V) = f=FO = (XIX) " X|Y) = (X"X) X7V
A non-parametric, non-linear, alternative inference is SVM classification. If ¥, €
H, is the lifting function ¥: R" — R (:x € R" - ¥ = ¥, € H), where 7 < d, the
kernel ¥, (y) = (x]y): 0 x 0 - R transformes non-linear to linear separation, the
observed data 0; = {x;,y;} € R" are lifted to o, € H. The SVM prediction
operator is the weighted sum of the kernel functions at 3, where g* is a
solution to the SVM regularized optimization:

Mol B Yy =wix+b= ?:117;(‘/)0“/’01-)}1 +b,

predictions

(7'egularizer fidelity

—

mi w2+ CZ’i’llfi),y(i)(wa(i) + b) >1-¢§,§ =20

n
weR4, EeRT

The dual weight coefficients, p;, are multiplied by the label corresponding to each training instance, {y®} .
Inference always depends on the (input) data; however, it does not have 1-1
and onto bijective correspondence with the data, since the inference function

quantifies predictions in a probabilistic sense.

3/14/2024
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Spacekime Analytics: fMRI Example

O 3D Isosurface Reconstruction of (2D space x 1D time) fMRI signal

Spacetime Reconstruction using trivial Spacekime Reconstruction using
phase-angle; kime=time=(magnitude, 0) correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
f =h (xl' X2, \E_J )
space time

Spacetime Time-series = Spacekime Kimesurfaces = TLM

| PR
Difference for ON & OFF Kime-Surface/Kime-5Series at a fixed voxel location

Result

—— trace 7

—— forecasted time serie
80% upper bound
80% lower bound
95% upper bound
95% lower bound

— original time series

10



Mapping Longitudinal Data (Time-series) to Kime-Surfaces

The forward and inverse (continuous) Laplace transforms are defined below.

 For a given function (of time) f(¢t): R* - C, the Laplace transform is the function
of a complex frequency argument, F(z) = L(f)(z): C - C:

L) (@) = F(z) = f FOe"dt.
0

For a given function of a complex frequency argument, F (z), the Inverse Laplace

transform (ILT) is the function of a positive real (time-like) argument f(t) =

L7Y(F)(t): RT > C, which is defined in terms of a complex path integral (a.k.a.

Bromwich integral or Fourier-Mellin integral):

1 y+iT
f() = L7Y(F)(t) = — lim f e?'F(2)dz,
27 T>o0 y—iT

where the parameter y € R is chosen so that the entire complex contour path of the
integral is inside of the region of convergence of F(z).

In probability and statistics, the Laplace transform plays the role of expected value. If X

is a random variable, then its Laplace transform, i.e., the LT of its probability density
function fy, is given by the expectation of an exponential: L(X) = L(f)(z) = E(e~?%).

Mapping Longitudinal Data (Time-series) to Kime-Surfaces

fMRI Finger-tapping Experimental Design

225" oFF: T Epory fMRI Signal OFF:
Epoch 1 Epoch

8 Finger-taping Epochs t =160

ON | 10 10 10 | 10 | |, 10 | | .10 10 | | 10 | [time

OFF 00| 10 10 1 0 | [ 10 | 10 0.\ 10 |
t Kl Se%l#ﬁglla\\ 8 Rest-state Epochs
observations
[

.Semno, yoods g
Sanno, yoods g

Kime-
surfaces

Kime-series
fMRI Intensities: (k) = f(t,¢) = Ae'?

Rest: OFF

Activation: ON

state state

25
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Mapping Longitudinal Data (Time-series) to Kime-Surfaces

Apply the ILT (£~ ) to reconstruct a time-series, f(t) = L™1(F)(t):
1 1 2 Z A 1
z+1 z2+1 z2+1 Z
F(2)=L(fi(t)=e™)) FR2)=L(f({O)=sin®t)) F@)=L(fs(t)=cos(t)) Fa@)=L(fa(O)=t)
fO=LTYE) =L FE +F X5 +F)) =
L7N(F) + (L_l(Fz) < 5_1(F3)) )+ L7 (F) =

convolution

F(z) = L(f) =

)

LML) O + (L) * L)) (0 + L7 (LU @),

fO=LTTE)O =B+ L+ HO+ 0 =

t g
tsin(t
e’r+jsin(r)Xcos(t—r)dr+t:t+e‘t+ ().
0

ILT Reconstructed fMRI Time-series, f=ILT(F)

o

€
£
f
z
H
;

Tensor-based Linear Modeling of fMRI

3-Step Analysis: registering the fMRI data into a brain atlas space, 56 ROls, tensor
linear modeling, post-hoc FDR processing & selection of large clusters of significant
voxels are identified within the important ROIs: Y = (X,B) + E.

N
tensor product
time ROI b—box

The dimensions of the time-tensor Y are 160 x @ x b x ¢, where the tensor elements represent
the response variable Y[t, x,y, z], i.e., fMRI intensity. For fMRI magnitude (real-valued signal),

the design kime-tensor X dimensions are: 10 * 8 X State X 4 x1.
S—— S—— sl R
Kime(TimexeiXRepeat)  Stimvs.Rest(2) effects R

Voxel-based TLM/Analysis
FDR Corrected (step 3, left) vs. Raw (step 2, right)

A )J |3.]3 Step 3: 2D voxel analysis projections
< (finger-tapping task modeling) M

12
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Spacekime Analytics: Resources & Demos

O Tutorials

U R Package

O GitHub

O Pubs
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