

Bilinear Algorithms

Consider a bilinear operator

$$\beta: \mathbb{U} \times \mathbb{V} \longrightarrow \mathbb{W}$$

· A bilinear algorithm is a decomposition

$$\beta(u,v) = \sum_{i=1}^{r} \phi_i(u)\psi_i(v)w_i$$

_

Growth Factor

Definition 3.1. Let $\mathbb{U}, \mathbb{V}, \mathbb{W}$ be three finite-dimensional real vector spaces. A decomposition of a bilinear operator $\beta: \mathbb{U} \times \mathbb{V} \to \mathbb{W}$ is a sequence $\mathcal{D} = (\varphi_i, \psi_i, w_i)_{i=1}^r$ with

$$\beta = \sum_{i=1}^{r} \varphi_i \otimes \psi_i \otimes w_i, \tag{3.2}$$

where $\varphi_i: \mathbb{U} \to \mathbb{R}$ and $\psi_i: \mathbb{V} \to \mathbb{R}$ are linear functionals and $w_i \in \mathbb{W}$, i = 1, ..., r. An algorithm $\widehat{\beta}_{\mathcal{D}}$ given by the decomposition \mathcal{D} takes $(u,v)\in\mathbb{U}\times\mathbb{V}$ as inputs and computes the output $\beta(u,v)$ in three steps:

- (i) computes $\varphi_i(u)$ and $\psi_i(v)$, i = 1, ..., r;
- (ii) computes $\varphi_i(u)\psi_i(v)w_i$, $i=1,\ldots,r$; (iii) computes $\sum_{i=1}^r \varphi_i(u)\psi_i(v)w_i$.

The growth factor of the algorithm $\widehat{\beta}_{\mathcal{D}}$ is defined as

$$\gamma(\widehat{\beta}_{\mathcal{D}}) := \sum_{i=1}^r \|\varphi_i \otimes \psi_i \otimes w_i\| = \sum_{i=1}^r \|\varphi_i\|_* \|\psi_i\|_* \|w_i\|.$$

3

Tensor Rank

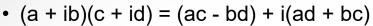
 The bilinear complexity of an algorithm is the number of terms r in the decomposition

$$\beta = \sum_{i=1}^{r} \phi_i \otimes \psi_i \otimes w_i.$$

The tensor rank corresponds to the optimal speed of evaluating this bilinear operator

$$\operatorname{rank}(\beta) \coloneqq \min \left\{ r : \beta = \sum_{i=1}^r \varphi_i \otimes \psi_i \otimes w_i \right\}$$

Example



- Viewed as a bilinear operator $\ eta: \mathbb{R}^2 imes \mathbb{R}^2 \longrightarrow \mathbb{R}^2$
- · Method 1: compute ac, bd, ad, bc
- Method 2: compute (a+b)(c+d), ac, bd $e_1^*(a,b) = a, \quad e_2^*(a,b) = b$

$$\widehat{\beta}_{R} = (e_{1}^{*} \otimes e_{1}^{*} - e_{2}^{*} \otimes e_{2}^{*}) \otimes e_{1} + (e_{1}^{*} \otimes e_{2}^{*} + e_{2}^{*} \otimes e_{1}^{*}) \otimes e_{2},$$

$$\widehat{\beta}_{G} = (e_{1}^{*} + e_{2}^{*}) \otimes (e_{1}^{*} + e_{2}^{*}) \otimes e_{2} + e_{1}^{*} \otimes e_{1}^{*} \otimes (e_{1} - e_{2}) - e_{2}^{*} \otimes e_{2}^{*} \otimes (e_{1} + e_{2}),$$

5

Example

- Growth factor of method1 is 4.
- Growth factor of method2 is $2(1+\sqrt{2})$.

$$\begin{split} \widehat{\beta}_{\mathrm{R}} &= (e_1^* \otimes e_1^* - e_2^* \otimes e_2^*) \otimes e_1 + (e_1^* \otimes e_2^* + e_2^* \otimes e_1^*) \otimes e_2, \\ \widehat{\beta}_{\mathrm{G}} &= (e_1^* + e_2^*) \otimes (e_1^* + e_2^*) \otimes e_2 + e_1^* \otimes e_1^* \otimes (e_1 - e_2) - e_2^* \otimes e_2^* \otimes (e_1 + e_2), \end{split}$$

 Indeed, the second method is less stable than the first one.

Tensor Rank of Complex Matrix Multiplication

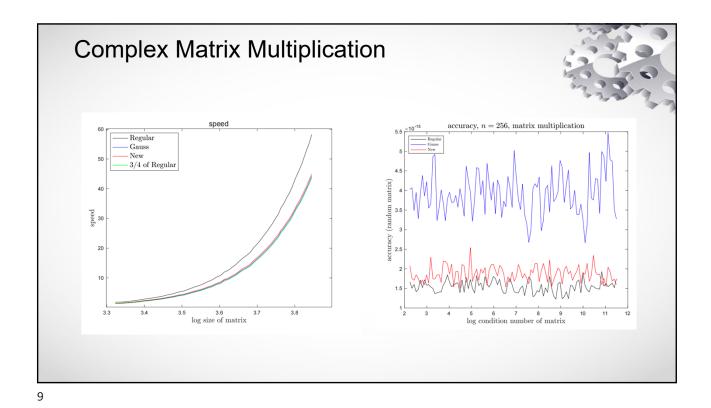
- Every algorithm that evaluates complex matrix multiplications requires at least three real matrix multiplications. [Winograd 1971]
- Gauss's algorithm uses the least number of real matrix multiplciations.
- Regular algorithm has the smallest growth factor.
- Does there exist an algorithm that is both fast and accurate?

7

Complex Matrix Multiplication

- Uses three real matrix multiplications.
- · Has smallest growth factor.

$$\begin{split} (A+iB)(C+iD) &= \frac{1}{2} \bigg[\bigg(A + \frac{1}{\sqrt{3}} B \bigg) \bigg(C + \frac{1}{\sqrt{3}} D \bigg) + \bigg(A - \frac{1}{\sqrt{3}} B \bigg) \bigg(C - \frac{1}{\sqrt{3}} D \bigg) - \frac{8}{3} B D \bigg] \\ &\quad + \frac{i\sqrt{3}}{2} \bigg[\bigg(A + \frac{1}{\sqrt{3}} B \bigg) \bigg(C + \frac{1}{\sqrt{3}} D \bigg) - \bigg(A - \frac{1}{\sqrt{3}} B \bigg) \bigg(C - \frac{1}{\sqrt{3}} D \bigg) \bigg], \end{split}$$



Applications

• Complex Neural Network $f(W_1, \dots, W_d, \sigma)(x) \coloneqq W_d \sigma(W_{d-1} \sigma(\dots W_2 \sigma(W_1 x) \dots)).$

Frobenius Inversion

• Z = A + iB

$$Z^{-1} = (A + BA^{-1}B)^{-1} - iA^{-1}B(A + BA^{-1}B)^{-1}$$

11

Optimality

Algorithm 1 Frobenius inversion

Input A = Re(Z), B = Im(Z)Output inverse of Z1: if $Z \in \mathcal{S}_1$ then
2: set X = A, Y = B;
3: else if $Z \in \mathcal{S}_2$ then
4: set X = B, Y = A;
5: end if
6: compute X^{-1} ;
7: compute $X^{-1}Y$;
8: compute $X^{-1}Y$;
9: compute $X + YX^{-1}Y$;
10: compute $X = (X + YX^{-1}Y)^{-1}$;
11: compute $X = (X + YX^{-1}Y)^{-1}$;
12: if $X \in \mathcal{S}_1$ then return $X = (X + YX^{-1}Y)^{-1}$;
13: else if $X \in \mathcal{S}_2$ then return $X = (X + YX^{-1}Y)^{-1}$;
14: end if

Theorem 2.2 (optimality). Algorithm 1 is optimal in the sense of least number of real matrix multiplications, inversions and additions.

Numerical Properties

Algorithm 2 matrix inversion via LU decomposition

Input $A \in GL_n(\mathbb{k})$

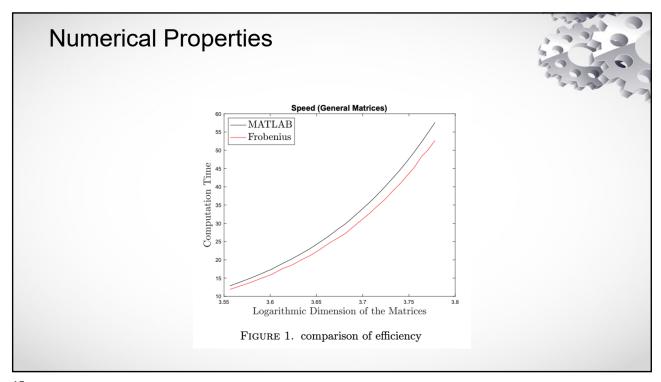
Output inverse of A

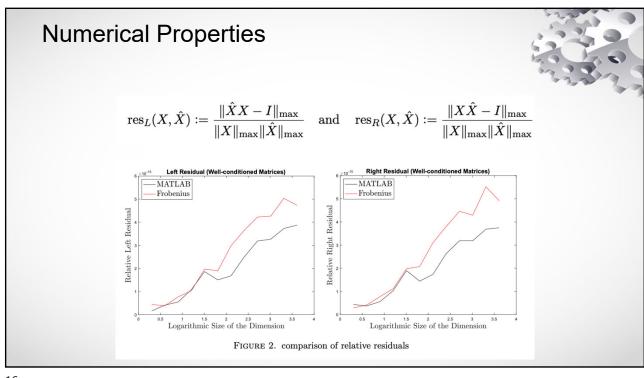
- 1: compute LU factorization of A = LU;
- 2: compute U^{-1} ;
- 3: solve for X from $XL = U^{-1}$;
- 4: return X;

13

Numerical Properties

Theorem 3.1 (threshold). Let A be an algorithm for real matrix multiplication. Assume that the running time of A on pairs of $n \times n$ matrices of which at least one is upper or lower triangular is $\lambda T_{\mathrm{mult}}^{\mathcal{A}}(n)$ for some $0 < \lambda \leq 1$. Then Algorithm 1 is asymptotically faster than Algorithm 2 over \mathbb{C} if and only if $\lim_{n\to\infty} \left(T_{\mathrm{inv}}^{\mathcal{A}}(n)/T_{\mathrm{mult}}^{\mathcal{A}}(n)\right) > 1 + \lambda/2$. In particular, if \mathcal{A} is the usual matrix multiplication algorithm, then Algorithm 1 is asymptotically faster than Algorithm 2 over \mathbb{C} if and only if $\lim_{n\to\infty} \left(T_{\mathrm{inv}}^{\mathcal{A}}(n)/T_{\mathrm{mult}}^{\mathcal{A}}(n)\right) > 5/4$.





Matrix Sign Function

Given a matrix $A \in \mathbb{C}^{n \times n}$, we write $A = ZJZ^{-1}$ where $J = \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix}$ is the Jordan canonical form of A such that eigenvalues of A in the diagonal of J_1 (resp. J_2) have negative (resp. positive) real parts. The matrix sign function is defined to be

$$\mathrm{sign}(A) = Z \begin{bmatrix} -I & 0 \\ 0 & I \end{bmatrix} Z^{-1}.$$

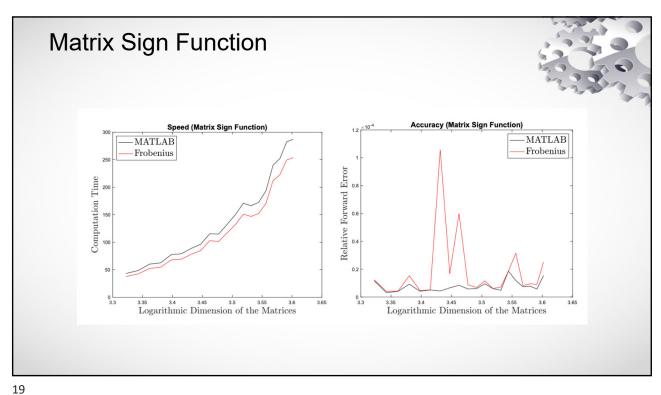
17

Matrix Sign Function

 The matrix sign function of A can be computed via Newton's method:

$$X_0 = A;$$

$$X_{t+1} = \frac{1}{2}(X_t + X_t^{-1}).$$



Sylvester Equation

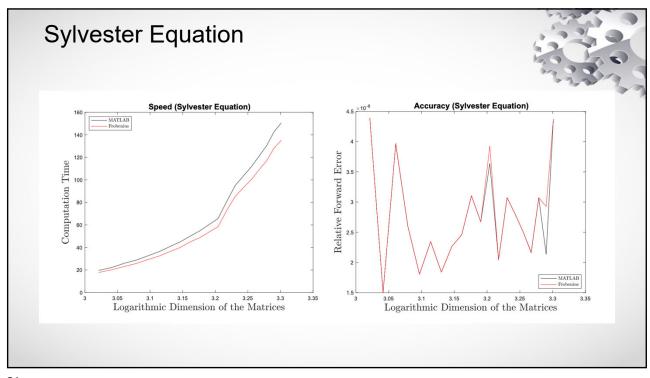
Given A,B, and C, want to solve for X in

$$AX + XB = C.$$

Can be solved using Newton's method:

$$X_{t+1} = \frac{1}{2}(X_t + X_t^{-1}),$$

$$X_0 = \begin{bmatrix} A & -C \\ 0 & -B \end{bmatrix}.$$



21

Polar Decomposition

- A = UH.
- · Compute U using Newton's method:

$$X_0 = A;$$

$$X_{t+1} = \frac{1}{2}(X_t + X_t^{-*}).$$

