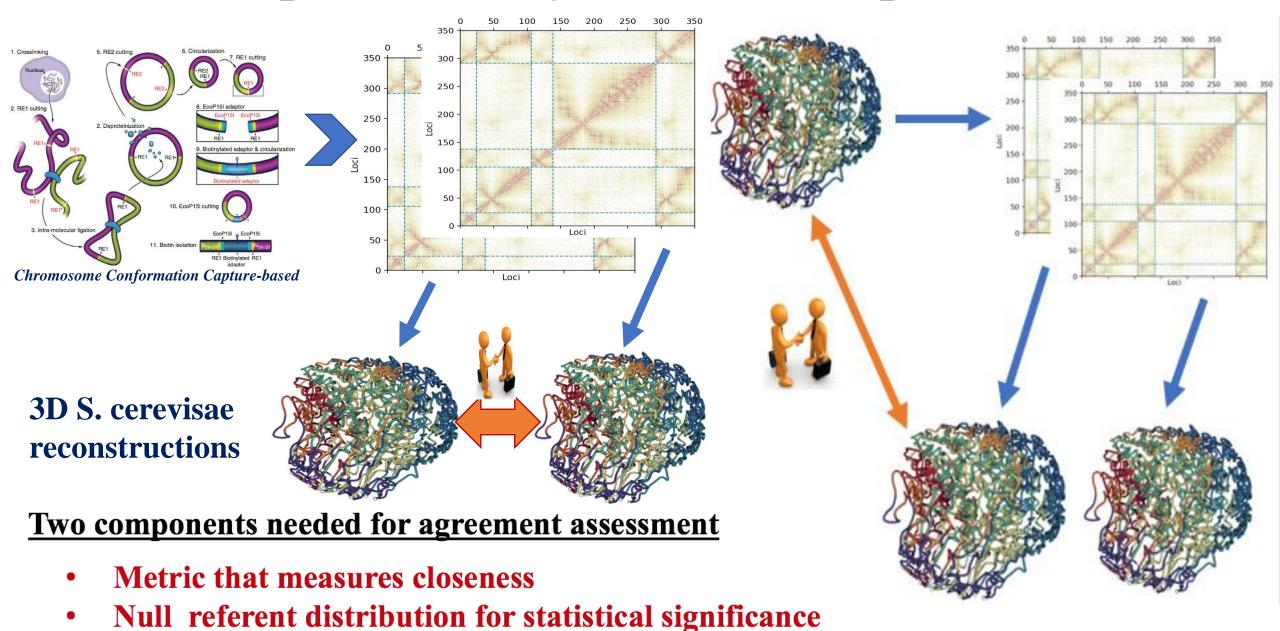

Statistical Topology of Genome Analysis: From Chromosome Conformation Capture data to 3D structure

Maxime Pouokam
UC Davis
Statistics department

The genome folding problem

How can a 2 meters of DNA being packed into a 10 um diameter cell?

Chromosome Conformation Capture-based assays measure proximal pairs of DNA loci

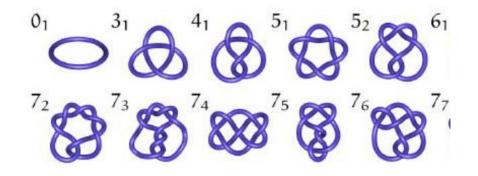

3C / 4C / 5C / Hi-C / TCC 350 300 250 6. Circularization Crosslinking 200 7. RE1 cutting 150 100 EcoP15I adaptor 2. RE1 cutting 50 2. Deproteinization Biotinylated adaptor & circularization **Multidimensional** scaling (MDS) 10. EcoP15I cutting 3. Intra-molecular ligation 11. Biotin isolation Data: 1-10 billion sequencing reads

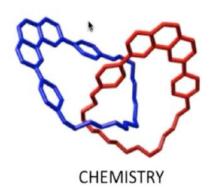
- Technical bias (from the sequencing and mapping)
- Biological bias (inherent to the physical properties of chromatin)

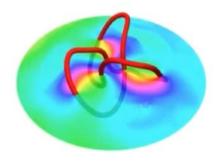
Dekker et al. Science 2002, Lieberman-Aiden, Van Berkum et al., Science 2009 Rao et al., Cell 2014

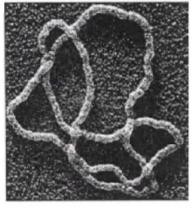
3D Yeast S.Cerevisiae

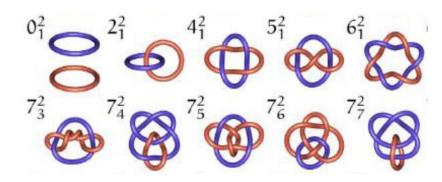
Reproducibility / Evaluation problem

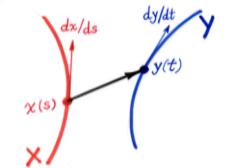

Knot / Link exists in nature


NATURE



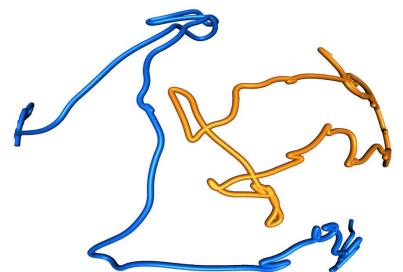

ART



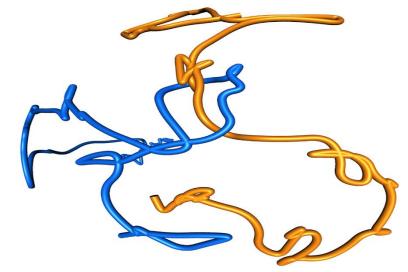


PHYSICS

BIOLOGY


Gauss double integral of the two curves is defined as

Linking Number is a topological Invariant – use to compute entanglements



$$Lk = \frac{1}{4\pi} \int_{X} \int_{Y} \frac{x(s) - y(t)}{|x(s) - y(t)|^{3}} dx(s) \times dy(t)$$

It is difficult to measure entanglement in open

chains

Topologically can be deformed into

Desired properties

- Computable, Well defined, Interpretable
- Stable: minimum effects from small perturbations
- Be continuous in "some sense"

Solution: Closure

Closure algorithm: For a given pair of chromosomes i and j, X_{ij} represents a random outcome of determining the topological state of the two chromosomes,

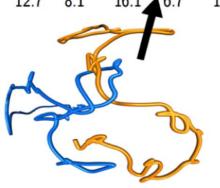
$$X_{ij} = \left\{ egin{array}{ll} 1, & \mbox{if the ith and jth circularized chromosomes have non zero Lk} \\ 0, & \mbox{otherwise} \end{array}
ight.$$

Define $Y_{ij} = \sum_{n=1}^{N} (X_{ij})_n$ is the total number of times the LK of the two circularized chromosomes i and j were found to be nonzero. p_{ij} is the linking proportion associated to chromosomes i and j and estimated as $\hat{p}_{ij} = \frac{\dot{Y}_{ij}}{\Lambda I}$ **◆□▶ ◆□▶ ◆壹▶ ★壹▶ ★ 壹 ★ か**9()

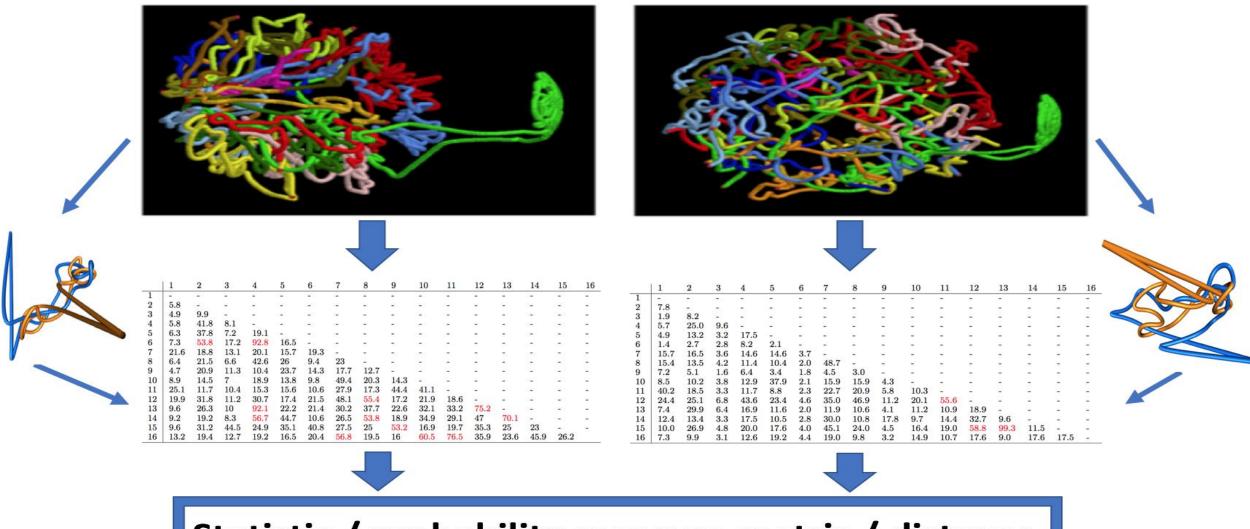
Results: The linking proportions (Lp) measure entanglement between pair of chromosomes and are lower than expected...

Lp are recorded in %.

			ַן וַ													
	1	II	III	IV	V						XI					Control of the Contro
	-	6.2	2.9	9.4	11.8	2.5	19.8	8.7	2.3	3.9	6.2	6.1	3.7	7.0	6.1	6.9
I	7.6	-	3.3	30.3	7.5	14.5	9.4	9.6	9.9	6.0	7.7	14.0	3.8	10.5	11.1	60.8
Ш	2.3	5.7	-	4.5	3.7	2.0	4.3	2.8	3.3	3.3	3.0	5.8	6.7	3.7	7.8	2.7
		4-0			404	44.0	40 -							4- 6		


Lp > 50% in red

		Ш	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	ΧV	XVI
1	-	6.2	2.9	9.4	11.8	2.5	19.8	8.7	2.3	3.9	6.2	6.1	3.7	7.0	6.1	6.9
II	7.6	-	3.3	30.3	7.5	14.5	9.4	9.6	9.9	6.0	7.7	14.0	3.8	10.5	11.1	60.8
Ш	2.3	5.7	-	4.5	3.7	2.0	4.3	2.8	3.3	3.3	3.0	5.8	6.7	3.7	7.8	2.7
IV	7.1	17.3	7.0	-	13.1	11.0	19.7	44.7	12.7	6.2	13.2	18.6	5.3	15.0	22.3	41.8
V	6.1	11.1	2.8	13.9	-	3.4	17.3	11.7	4.4	7.7	7.7	11.6	5.4	16.1	11.4	9.5
VI	1.5	2.6	2.9	8.5	2.2	-	5.7	4.2	3.8	2.6	3.3	6.1	2.5	4.6	6.9	12.5
VII	11.8	14.8	2.6	11.9	12.2	2.4	-	15.1	5.8	7.4	8.5	11.7	5.0	16.7	10.2	13.4
VIII	11.2	13.3	2.7	10.2	7.2	1.7	51.8	-	5.0	5.9	11.9	11.3	2.1	19.8	7.5	10.9
IX	4.4	5.0	2.1	5.7	2.8	1.5	3.5	3.4	-	6.4	4.9	21.5	4.7	5.7	9.7	11.0
X	5.6	12.3	2.5	12.6	30.8	1.6	12.5	11.9	3.3	-	7.0	34.8	10.4	13.0	13.7	7.0
XI	31.5	16.1	3.0	11.2	9.4	1.7	18.2	17.5	4.5	10.5	-	17.6	3.4	18.6	15.6	16.1
XII	23.0	24.8	5.6	55.9	16.4	4.5	33.3	70.3	9.7	17.6	35.4	-	8.0	19.5	35.8	26.4
XIII	6.0	24.9	4.5	16.0	9.9	2.7	11.6	9.7	3.7	8.9	9.4	20.2	-	5.5	5.6	3.8
XIV	9.8	11.3	2.6	13.6	10.2	3.5	24.7	9.5	12.2	8.6	12.7	29.8	8.9	-	19.3	10.2
XV	9.5	21.9	4.3	13.3	12.2	3.7	50.9	20.9	4.9	15.8	15.7	39.1	99.4	14.7	-	23.7
XVI	6.9	8.9	2.2	12.1	16.4	2.9	15.5	9.8	3.0	12.7	8.1	16.1	6.7	13.2	13.9	-
	_											7				



Reconstruction 8

Our statistical agreement approach

Statistic / probability measure metric / distance

test to assign p-values: correct p-values for multiple testing

Model and test formulation

Model,

$$Y_{ij}^k \sim Bin(N, p_{ij}^k); \qquad 1 \leq i < j \leq 16;$$

Hypothesis testing,

$$H_0: p_{ij}^k = p_{ij}^l$$
 VS. $H_1: p_{ij}^k \neq p_{ij}^l$; $k \neq l$.

The Likelihood ratio test (LRT) is defined as,

$$\lambda(Y) = \frac{\sup\{L(\theta; Y) : \theta \in \Theta_0\}}{\sup\{L(\theta; Y) : \theta \in \Theta\}}, \qquad Y = (Y_{ij}^k, Y_{ij}^l), \qquad \theta = (p_{ij}^k, p_{ij}^l)$$

Thus the LRT statistics is,
$$\lambda(Y) = \frac{L(\hat{\theta}_0; Y)}{L(\hat{\theta}; Y)}$$

By Wilks' Theorem(1938), under H_0 , $-2log(\lambda(Y)) \xrightarrow{D} \chi^2_{120}$

Pearson Chi-square test statistic

For a pair of reconstructions k and l, the Pearson Chi-square test statistic is,

$$\mathbf{X^2} = \sum_{l=1}^{2} \sum_{i < j} \frac{(O_{ijl}^k - E_{ijl})^2}{E_{ijl}} + \sum_{l=1}^{2} \sum_{i < j} \frac{(O_{ijl}^l - E_{ijl})^2}{E_{ijl}}$$

- O_{ij1}^k = observed number of linked conformations out of N in the closure algorithm (which is Y_{ij}^k in our notation)
- O_{ij2}^k = number of unlinked conformations out of N, $N-Y_{ij}^k$
- E_{ij1} = expected number of linked conformations out of N, $E_{ij1} = \frac{Y_{ij}^{\kappa} + Y_{ij}^{\prime}}{2}$
- E_{ij2} = expected number of unlinked conformations, $E_{ij2} = N \frac{Y_{ij}^k + Y_{ij}^l}{2}$

Hence,
$$\mathbf{X^2} = 2N \sum_{i < j} \frac{(Y_{ij}^k - Y_{ij}^l)^2}{[Y_{ii}^k + Y_{ii}^l][2N - (Y_{ii}^k + Y_{ii}^l)]}$$
 Under H_0 , $\mathbf{X^2} \xrightarrow{D} \chi_{120}^2$

Conclusion

The Likelihood Ratio test and Pearson Chi-Square test separated all reconstructions obtained by MDS methods Most p-values << 0.0001

Semi-soft thresholding approach for inference of proportions

• We define,
$$\delta_{ij}=p_{ij}-q_{ij},\quad z_{ij}=rac{\hat{\delta}_{ij}}{\sqrt{rac{\hat{p}_{ij}(1-\hat{p}_{ij})+\hat{q}_{ij}(1-\hat{q}_{ij})}{N}}}$$
 $i < j$

- ullet The shrinkage variable as, $ilde{\delta}_{ij}(c)=\hat{\delta}_{ij}G(|z_{ij}|/c)$
- The squared error distance, $F(c) = \sum_{i < i} (\tilde{\delta}_{ij}(c) \delta_{ij})^2$

$$F(c) = \sum_{i < j} \tilde{\delta}_{ij}^2(c) + \sum_{i < j} \delta_{ij}^2 - 2 \sum_{i < j} \tilde{\delta}_{ij}(c) \delta_{ij}$$

The criterion function is formulated as,

$$\hat{F}(c) = \sum_{i < j} \tilde{\delta}_{ij}^{2}(c) - 2\sum_{i < j} \hat{\delta}_{ij}\tilde{\delta}_{ij}(c) + 2\sum_{i < j} \{\hat{Var}(\hat{p}_{ij}) \frac{\partial \tilde{\delta}_{ij}(c)}{\partial \hat{p}_{ij}} - \hat{Var}(\hat{q}_{ij}) \frac{\partial \tilde{\delta}_{ij}(c)}{\partial \hat{q}_{ij}} \}$$

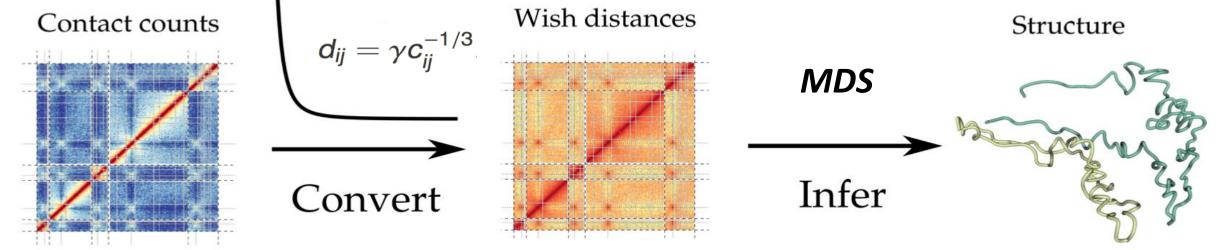
We use known distribution functions G_1 and G_2 on $[0, \infty)$ where, $G_1(u) = u^2/(1+u^2)$, and $G_2(u) = (u-0.5)_+^2/[1+(u-0.5)_+^2]$

Semi-soft thresholding approach discriminates all MDS reconstructions

Table 3.21: Number of zero entries in the vectors $\hat{\delta}$ and its shrinkage analogues, $\tilde{\delta}(\hat{c})$ obtained using the CLT and Arsine transformation. The smoothing function is $G_1 = u^2/(1+u^2), u > 0$.

		CLT	Arcsine
Reconstructions	$\%$ of zeros in $\hat{\delta}$	$\%$ of zeros in $ ilde{\delta}(\hat{c})$	$\%$ of zeros in $ ilde{\delta}(\hat{c})$
1 & 2	8.33	15.00	14.17
1 & 3	5.83	5.83	12.50
1 & 4	10.83	14.17	13.33

Table 3.22: Number zero of entries in the vectors $\hat{\delta}$ and its shrinkage analogues, $\tilde{\delta}(\hat{c})$ obtained using the CLT and Arsine transformation. The smoothing function is $G_2 = (u-0.5)_+^2/[1+(u-0.5)_+^2], u > 0$.


		CLT	Arcsine
Reconstructions	$\%$ of zeros in $\hat{\delta}$	$\%$ of zeros in $ ilde{\delta}(\hat{c})$	$\%$ of zeros in $ ilde{\delta}(\hat{c})$
1 & 2	8.33	15.83	16.67
1 & 3	5.83	5.83	15.00
1 & 4	10.83	14.17	13.33

Conclusion

MDS-based reconstruction approaches fail to preserve chromosomal topology

3D reconstruction as dimension reduction, $O(N^2)$ to O(3N), with N being the number of genomic loci/beads

Metric multidimensional scale (MDS)

Formulation

$$\underset{\mathbf{x}_1,...,\mathbf{x}_n}{\text{minimize}} \quad \sigma(\mathbf{X},C) = \sum_{i,j|c_{ij}\neq 0} w_{ij}(||x_i - x_j||_2 - \Theta(c_{ij}))^2$$

s.t.

some constraints

- X: 3D coordinates
- C: normalized contact counts.

CCC data

Table 1.1: Frequency of interactions within chromosome I (top part) and between chromosome I and chromosome II (bottom part) using 4C.

Chromosome	Locus 1	Chromosome	Locus 2	Contact frequency	Q-value
I	2894	I	191604	8	7.964353e-03
I	2894	I	226931	11	2.141016e-05
I	3437	I	31834	47	8.402414e-04
I	3437	I	167621	10	8.193970e-04
I	3437	I	226931	9	7.598729e-04
I	5091	I	26147	174	2.123039e-39
:	:	:	÷	:	:

Smooth3D, Inferring 3D structure of genome via cubic spline approximation

Model,

$$Y_{ij} = \log(c_{ij}) = \log(\mu_{ij}) + \varepsilon_{ij}, \ j = 1, \ldots, n_i, \ i = 1, \ldots, k,$$

where $\{\varepsilon_{ij}\}$ are i.i.d. with mean zero and variance σ^2 . Our goal is to find a 3D curve \boldsymbol{x} from [0,1] to \mathbb{R}^3 so that

$$Q(\mathbf{x}) = \sum_{i,j} \left[Y_{ij} + \alpha \log ||\mathbf{x}(t_i) - \mathbf{x}(t_j)|| \right]^2$$

is minimized. Where $\mu_{ij} = ||\mathbf{x}(t_i) - \mathbf{x}(t_j)||^{-\alpha}$, t_i is the position of locu i.

$$x_1(0) = x_2(0) = x_3(0) = 0,$$

 $x_1(0.5) = 0, x_1(1) = x_2(1) = 0,$
 $\int x_1(t) \le -\delta, \quad x_2(0.5) \le -\delta, \quad x_3(1) \ge \delta,$

$$(1)$$

where $\delta > 0$ is a very small real number.

Spline Parametrization of x(t)

We use cubic B splines to model the curve x

$$x_1(t) = \beta_1^T \mathbf{B}_1(t), \ x_2(t) = \beta_2^T \mathbf{B}_2(t), \ x_3(t) = \beta_3^T \mathbf{B}_3(t),$$
 (2)

where β_1, β_2 are β_3 are k+1, k+2 and k+3 dimensional vectors respectively. k is the # of knots. The inequality constraints in (1) are now

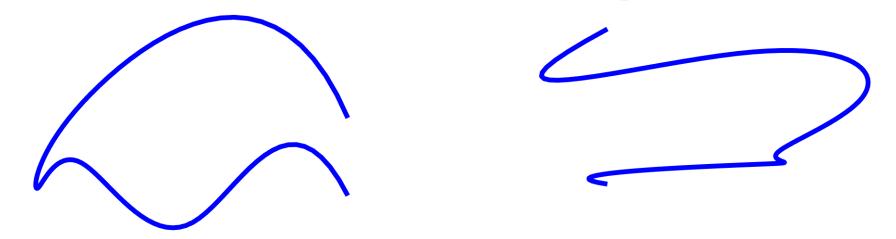
$$\sum \beta_{1j} \leq -\delta, \ \boldsymbol{\beta}_2^T \boldsymbol{B}_2(0.5) \leq -\delta, \ \boldsymbol{\beta}_3^T \boldsymbol{B}_3(1) \geq \delta.$$
 (3)

Thus the optimization problem is to minimize

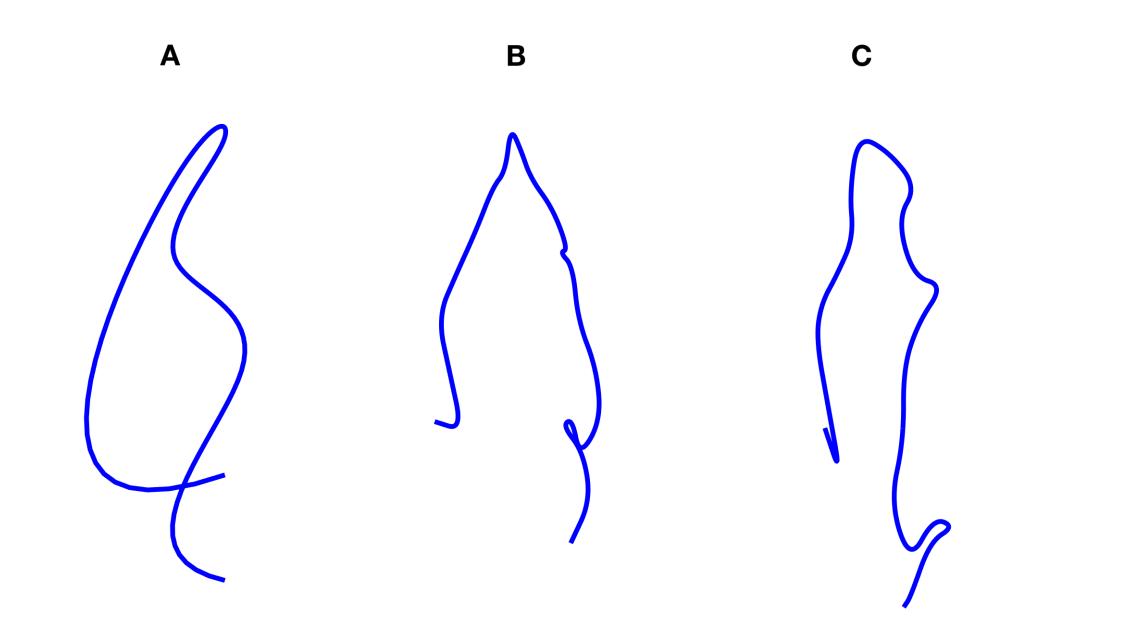
$$Q(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \alpha) = \sum_{i,j} [Y_{ij} + \alpha \log || \boldsymbol{x}(t_i) - \boldsymbol{x}(t_j) ||]^2, \qquad (4)$$

with respect to $\beta_1, \beta_2, \beta_3$ and α , subject to the constraints given in (3).

Global minimum: We used the random multistart method. In the outer loop we obtained random starting points. For each starting point, in the inner loop, we use cyclic block-coordinate minimization in order to obtain a local minima.


Table 4.1: Dimension reduction of Smooth3D as compared to the MDS-based and other optimization-based approaches.

		MDS-based	Smooth3D			
	# of loci at	# of parameters at	# of beads at a	# of parameters	# of knots	# of parameters
	the loci resolution	the loci resolution	10 kb resolution	10 kb resolution	# Of KHOUS	at the loci resolution
Chrom I	47	$47 \times 3 = 141$	23	$23 \times 3 = 69$	k = 4	$3 \times 4 + 6 = 18$
Chrom II	239	$239 \times 3 = 717$	80	$80 \times 3 = 240$	k = 5	$3\times 5+6=21$


Result: Differing views of 3D Reconstruction structure of chromosome I

- $oldsymbol{\circ}$ $lpha_0=$ 3, $\hat{lpha}=$ 1.015
- The minimum value was Q = 48.841

Chromosome I from Smooth3D (A) and MDS methods (B, C)

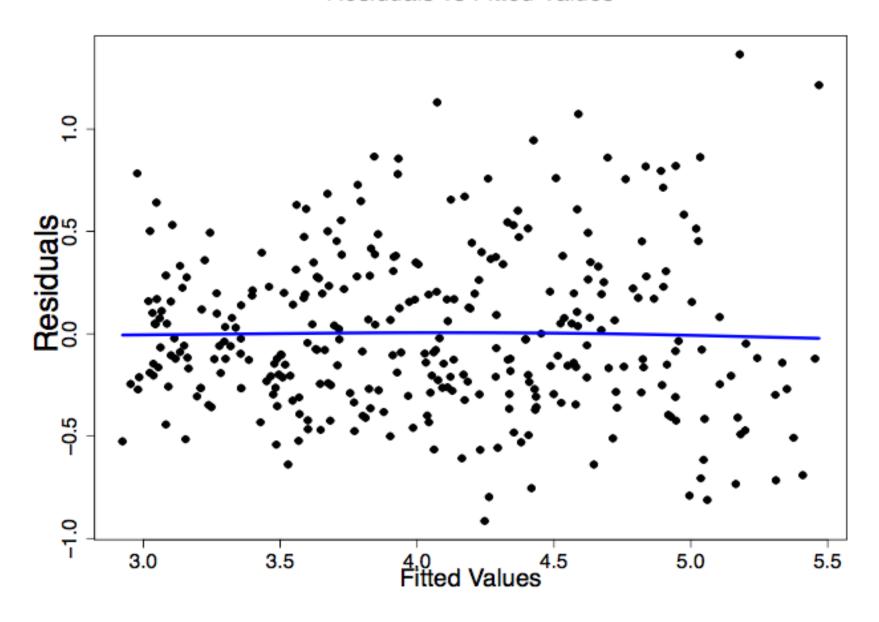


Figure 4.2: Residuals versus fitted values for Chromosome I

Conclusion

- Obtaining 3D genome conformation is important
- Reconstruction methods are challenging
- Many 3D reconstructions are consistent with any given contact map (Optimization methods local minimal)
- Can be diagnosed by comparing obtained solution under perturbed data inputs, constraint specifications, starting conditions
- Measuring entanglement can help exploring topological state of genome reconstructions
- In agreement assessment of 3D reconstructions, the metric is as important as the referent distribution
- Before any downstream functional analysis could be made we need reconstruction methods should be fast and stable, Smooth3D???!!!

UCDAVIS
UNIVERSITY OF CALIFORNIA Acknowledgements

Prof. Javier Arsuaga, co-advisor

Prof. Burman Prabir, co-advisor

Prof. Mariel Vazquez

Prof. Wolfgang Polonik

Prof. Alex Aue

Rob Scharein

Lab's members

Stat. Department, UC Davis

