Difference between revisions of "SOCR News ISI WSC IPS35 2019"
(→Session Program) |
(→Materials) |
||
Line 55: | Line 55: | ||
==Materials== | ==Materials== | ||
Will be available in 2019... | Will be available in 2019... | ||
+ | ===Abstracts=== | ||
+ | ====Predictive Analytics of Big Neuroscience Data==== | ||
+ | This talk will present some of the Big Neuroscience Data research and education challenges and opportunities. Specifically, we will identify the core characteristics of complex neuroscience data, discuss strategies for data harmonization and aggregation, and show case-studies using large normal and pathological cohorts. Examples of methods that will be demonstrated include DataSifter (enabling secure sharing of data), compressive big data analytics (facilitating inference on multi-source heterogeneous datasets), and model-free prediction (forecasting of clinical features or derived computed phenotypes). Simulated data as well as clinical data (UK Biobank, Alzheimer’s Disease Neuroimaging Initiative, and amyotrophic lateral sclerosis case-studies) will be used for testing and validation of the techniques. In support of open-science, result reproducibility, and methodological improvements, all datasets, statistical methods, computational algorithms, and software tools are freely available online. | ||
+ | |||
+ | ====Large Brain Network Data Modeling using Deep Learning and Statistical Inference==== | ||
+ | ... | ||
+ | |||
+ | ====TBD==== | ||
+ | ... | ||
+ | |||
+ | ====TBD==== | ||
+ | ... | ||
+ | |||
+ | ====TBD==== | ||
+ | ... | ||
+ | |||
+ | ===Short Bios=== | ||
+ | ====Ivo D. Dinov==== | ||
+ | [http://umich.edu/~dinov Ivo D. Dinov] is a professor of Health Behavior and Biological Sciences and Computational Medicine and Bioinformatics at the University of Michigan. He directs the [http://socr.umich.edu/ Statistics Online Computational Resource] and co-directs the Center for Complexity and Self-management of Chronic Disease (CSCD) and the multi-institutional Probability Distributome Project. Dr. Dinov is an Associate Director for Education and Training, of the Michigan Institute for Data Science (MIDAS). He is a member of the American Statistical Association (ASA), the International Association for Statistical Education (IASE), the American Medical Informatics Association (AMIA), as well as an Elected Member of the Institutional Statistical Institute (ISI). | ||
+ | |||
+ | ====Eric Tatt Wei Ho==== | ||
+ | ... | ||
+ | |||
+ | ====Yunjin Choi==== | ||
+ | ... | ||
+ | |||
+ | ====Michelle Liou==== | ||
+ | ... | ||
+ | |||
+ | |||
+ | ====S. Ejaz Ahmed==== | ||
+ | ... | ||
Revision as of 14:31, 23 October 2018
Contents
SOCR News & Events: International Statistics Institute (ISI)
2019 World Statistics Congress (WSC)
Invited Paper Session (IPS35): Imaging Statistics and Predictive Data Analytics
Logistics
- Websites:
- International Statistics Institute (ISI),
- 2019 World Stats Congress (WSC),
- Session (IPS35): Imaging Statistics and Predictive Data Analytics, 2-hour session including five 20+5 minute talks
- WSC Program
- Date: TBD (18 – 23 August 2019)
- Place: Kuala Lumpur Convention Centre (Kuala Lumpur, Malaysia)
- Proceedings: The 2019 WSC proceedings will include titles, abstracts, and papers (6 pages)
- Timeline:
- August 1 – November 1, 2018: All presenters must submit abstracts
- December 1, 2018 - May 31, 2019: All presenters must register and pay registration fees
- January 15, 2019 – April 15, 2019: All presenters must submit papers. More information on the abstract submission process
- April 15, 2019: Presenters must submit their presentations (PPTX or PDF)
- August 18 – 23, 2019: All presenters must attend and present their papers at the congress.
Abstract
Petabytes of imaging, clinical, biospecimen, genetics and phenotypic biomedical data are acquired annually. Tens-of-thousands of new methods and computational algorithms are developed and reported in the literature and thousands of software tools and data analytic services are introduced each year. This Imaging Statistics and Predictive Data Analytics session will include presentations of leading experts in biomedical imaging, computational neuroscience, and statistical learning focused on streamlining big biomedical data methodologies as well as techniques for management, aggregation, manipulation, computational modeling, and statistical inference. The session will blend innovative model-based and model-free techniques for representation, analysis and interpretation of large, heterogeneous, multi-source, incomplete and incongruent imaging and phenotypic data elements.
Session focus
This session will be of interest to many theoretical statisticians and applied biomedical researchers for the following reasons:
- The digital revolution demands substantial quantitative skills, data-literacy, and analytical competence: Health science doctoral programs need to be revised and expanded to build basic-science (STEM) expertise, emphasize team-science, rely on holistic understanding of biomedical systems and health problems, and amplify dexterous abilities to handle, interrogate and interpret complex multisource information.
- The amount of newly acquired biomedical imaging data is increasing exponentially. This demands innovative statistical and computational strategies to aggregate, process, and interpret the deluge of imaging, clinical and phenotypic information.
- Trans-disciplinary training and inter-professional education is critical for ethical and collaborative research involving complex biomedical imaging and health conditions.
- Exploratory and predictive Big Data analytics is pivotally important and complementary to traditional hypothesis-driven confirmatory analyses.
Session Program
Time | Title | Presenter | Affiliation |
---|---|---|---|
... | Predictive Analytics of Big Neuroscience Data | Ivo D Dinov | SOCR, University of Michigan |
... | Large Brain Network Data Modeling using Deep Learning and Statistical Inference | Eric Tatt Wei Ho | Universiti Teknologi PETRONAS (UTP), Malaysia |
... | TBD | Yunjin Choi | National University of Singapore |
... | TBD | Michelle Liou | Institute of Statistical Science Academia Sinica |
... | TBD | S. Ejaz Ahmed | Brock University |
Materials
Will be available in 2019...
Abstracts
Predictive Analytics of Big Neuroscience Data
This talk will present some of the Big Neuroscience Data research and education challenges and opportunities. Specifically, we will identify the core characteristics of complex neuroscience data, discuss strategies for data harmonization and aggregation, and show case-studies using large normal and pathological cohorts. Examples of methods that will be demonstrated include DataSifter (enabling secure sharing of data), compressive big data analytics (facilitating inference on multi-source heterogeneous datasets), and model-free prediction (forecasting of clinical features or derived computed phenotypes). Simulated data as well as clinical data (UK Biobank, Alzheimer’s Disease Neuroimaging Initiative, and amyotrophic lateral sclerosis case-studies) will be used for testing and validation of the techniques. In support of open-science, result reproducibility, and methodological improvements, all datasets, statistical methods, computational algorithms, and software tools are freely available online.
Large Brain Network Data Modeling using Deep Learning and Statistical Inference
...
TBD
...
TBD
...
TBD
...
Short Bios
Ivo D. Dinov
Ivo D. Dinov is a professor of Health Behavior and Biological Sciences and Computational Medicine and Bioinformatics at the University of Michigan. He directs the Statistics Online Computational Resource and co-directs the Center for Complexity and Self-management of Chronic Disease (CSCD) and the multi-institutional Probability Distributome Project. Dr. Dinov is an Associate Director for Education and Training, of the Michigan Institute for Data Science (MIDAS). He is a member of the American Statistical Association (ASA), the International Association for Statistical Education (IASE), the American Medical Informatics Association (AMIA), as well as an Elected Member of the Institutional Statistical Institute (ISI).
Eric Tatt Wei Ho
...
Yunjin Choi
...
Michelle Liou
...
S. Ejaz Ahmed
...
- SOCR Home page: http://www.socr.umich.edu
Translate this page: