Difference between revisions of "SOCR News SpacekimeAnalytics Fall2019"

From SOCR
Jump to: navigation, search
(References)
(Logistics)
Line 4: Line 4:
 
[[Image:SOCR_Hat_2019.png|150px|thumbnail|right| [http://socr.umich.edu SOCR Resource] ]]
 
[[Image:SOCR_Hat_2019.png|150px|thumbnail|right| [http://socr.umich.edu SOCR Resource] ]]
 
* '''School of Public Health''': [https://sph.umich.edu/biostat/events.php Biostatistics Seminar]
 
* '''School of Public Health''': [https://sph.umich.edu/biostat/events.php Biostatistics Seminar]
* '''Date/Times''': Thursday, September 26, 2019, 3:30 PM.
+
* '''Date/Times''': Thursday, September 26, 2019, 3:30 PM
* '''Place/Time''': [https://maps.studentlife.umich.edu/building/henry-frieze-vaughan-public-health-building 3755 SPH-I], University of Michigan, Ann Arbor.
+
* '''Place/Time''': [https://maps.studentlife.umich.edu/building/henry-frieze-vaughan-public-health-building 3755 SPH-I], University of Michigan, Ann Arbor
* '''Presenter''': [http://www.socr.umich.edu/people/dinov/ Ivo Dinov], joint work with [ Milen Velev]
+
* '''Presenter''': [http://www.socr.umich.edu/people/dinov/ Ivo Dinov], joint work with [http://www.socr.umich.edu/people/Milen_Velev.html Milen Velev]
 
* '''Flyer''': [http://wiki.socr.umich.edu/images/0/06/Dinov_SPH_Biostats_Spacekime_TalkFlyer_092619.pdf Seminar Flyer]
 
* '''Flyer''': [http://wiki.socr.umich.edu/images/0/06/Dinov_SPH_Biostats_Spacekime_TalkFlyer_092619.pdf Seminar Flyer]
  

Revision as of 11:29, 23 September 2019

SOCR News & Events: Longitudinal Spacekime Analytics: Time Complexity & Inferential Uncertainty

Logistics

Title

Longitudinal Spacekime Analytics: Time Complexity & Inferential Uncertainty

Abstract

As Big biomedical and health data becomes more ubiquitous, the corresponding analytical challenges require novel techniques for data management, aggregation, harmonization, processing, and analytics. This talk will present a new technique for modeling high-dimensional and time-varying data. The Longitudinal Spacekime Analytics approach relies on extending the notions of time and event to complex-time (kime) and complex-event (kevent). We will illustrate how the kime-order (time) and kime-direction (phase) affect the subsequent predictive analytics and the induced scientific inference. We will present some of the mathematical foundations and reveal various statistical implications including inferential uncertainty and Bayesian formulation of spacekime analytics. Simulated data, clinical observations (e.g., fMRI, UK Biobank), and air quality data will be used to demonstrate applications of spacekime analytics.

Slidedeck

Presentation Slides (PDF).

SOCR Resources

SOCR Demos


References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif