Difference between revisions of "SOCR News 2020 UM AIM Seminar Spacekime Dinov"

From SOCR
Jump to: navigation, search
(References)
m (Logistics)
 
(4 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
* '''Seminar Series''':  [http://dept.math.lsa.umich.edu/seminars_events/events.php?eventdefid=3&dt_begin=2020-01-01&dt_end=2020-06-30 Applied Interdisciplinary Mathematics (AIM)]
 
* '''Seminar Series''':  [http://dept.math.lsa.umich.edu/seminars_events/events.php?eventdefid=3&dt_begin=2020-01-01&dt_end=2020-06-30 Applied Interdisciplinary Mathematics (AIM)]
 
* '''Date/Times''': Friday, February 14, 2020, 3-4 PM.
 
* '''Date/Times''': Friday, February 14, 2020, 3-4 PM.
* '''Place/Time''': [https://maps.studentlife.umich.edu/building/east-hall East Hall (#1084), University of Michigan]
+
* '''Place/Time''': [https://maps.studentlife.umich.edu/building/east-hall East Hall (#1084), University of Michigan], [https://lsa.umich.edu/psych/resources/psychology-east-hall-floor-plan/_jcr_content/par/download/file.res/PsychologyEastHall0-5.pdf EH1084 Floor Plan]
 
* '''Presenter''': [http://www.socr.umich.edu/people/dinov/ Ivo Dinov]
 
* '''Presenter''': [http://www.socr.umich.edu/people/dinov/ Ivo Dinov]
* '''Slides''':  ...
+
* '''Slides''':  [http://socr.umich.edu/docs/uploads/2020/Dinov_TCIU_SpaceKime_2020_AIM_UM.pdf Spacekime Slides]
 
* '''Title''': ''Data Science, Time Complexity, and Spacekime Analytics''
 
* '''Title''': ''Data Science, Time Complexity, and Spacekime Analytics''
* '''URL''': [[SOCR_News_2020_UM_AIM_Seminar_Spacekime_Dinov | http://wiki.socr.umich.edu/index.php/SOCR_News_2020_UM_AIM_Seminar_Spacekime_Dinov]]
+
* '''[http://myumi.ch/2DP93 URL]''': [[SOCR_News_2020_UM_AIM_Seminar_Spacekime_Dinov | http://wiki.socr.umich.edu/index.php/SOCR_News_2020_UM_AIM_Seminar_Spacekime_Dinov]]
  
 
==Abstract==
 
==Abstract==
...
+
The immersion of Big Data in all human experiences presents important challenges of managing, modeling, analyzing, interpreting, and visualizing complex information. There is a substantial need to develop, validate, productize, and support novel mathematical techniques, advanced statistical computing algorithms, transdisciplinary tools, and effective artificial intelligence apps.  
  
 +
 +
Spacekime analytics is a new technique for modeling high-dimensional longitudinal data. This approach relies on extending the notions of time, events, particles, and wavefunctions to complex-time (kime), complex-events (kevents), data and inference-functions. We will illustrate how the kime-magnitude (longitudinal time order) and kime-direction (phase) affect the subsequent predictive analytics and the induced scientific inference. The mathematical foundation of spacekime calculus will reveal various statistical implications including inferential uncertainty and a Bayesian formulation of spacekime analytics. Complexifying time allows the lifting of all commonly observed processes from the classical 4D Minkowski spacetime to a 5D spacetime manifold, where a number of interesting mathematical problems arise.
 +
 +
 +
Direct data science applications of spacekime analytics will be demonstrated using simulated data, clinical observations (e.g., UK Biobank), and environmental air quality data.
 +
 +
 +
Joint work with [http://www.socr.umich.edu/people/Milen_Velev.html Milen V. Velev] (Burgas University, Bulgaria).
  
  

Latest revision as of 16:56, 25 January 2020

SOCR News & Events: Data Science, Time Complexity, and Spacekime Analytics

Logistics

Abstract

The immersion of Big Data in all human experiences presents important challenges of managing, modeling, analyzing, interpreting, and visualizing complex information. There is a substantial need to develop, validate, productize, and support novel mathematical techniques, advanced statistical computing algorithms, transdisciplinary tools, and effective artificial intelligence apps.


Spacekime analytics is a new technique for modeling high-dimensional longitudinal data. This approach relies on extending the notions of time, events, particles, and wavefunctions to complex-time (kime), complex-events (kevents), data and inference-functions. We will illustrate how the kime-magnitude (longitudinal time order) and kime-direction (phase) affect the subsequent predictive analytics and the induced scientific inference. The mathematical foundation of spacekime calculus will reveal various statistical implications including inferential uncertainty and a Bayesian formulation of spacekime analytics. Complexifying time allows the lifting of all commonly observed processes from the classical 4D Minkowski spacetime to a 5D spacetime manifold, where a number of interesting mathematical problems arise.


Direct data science applications of spacekime analytics will be demonstrated using simulated data, clinical observations (e.g., UK Biobank), and environmental air quality data.


Joint work with Milen V. Velev (Burgas University, Bulgaria).



References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif