Difference between revisions of "AP Statistics Curriculum 2007 Limits Norm2Bin"

From SOCR
Jump to: navigation, search
(Normal Approximation to Binomial Distribution)
m (Text replacement - "{{translate|pageName=http://wiki.stat.ucla.edu/socr/" to ""{{translate|pageName=http://wiki.socr.umich.edu/")
 
(11 intermediate revisions by 3 users not shown)
Line 2: Line 2:
  
 
=== Normal Approximation to Binomial Distribution===
 
=== Normal Approximation to Binomial Distribution===
Suppose [[AP_Statistics_Curriculum_2007_Distrib_Binomial | <math>Y~Binomial(n, p)</math>]] and <math>Y=Y_1+ Y_2+ Y_3+\cdots+ Y_n</math>, where [[AP_Statistics_Curriculum_2007_Distrib_Binomial | <math>Y_k~Bernoulli(p)</math>]] , <math>E(Y_k)=p</math>  & <math>Var(Y_k)=p(1-p)</math>. Then  <math>E(Y)=np</math>,  <math>Var(Y)=np(1-p)</math> and <math>SD(Y)= \sqrt{np(1-p)}</math>. If we use the [[AP_Statistics_Curriculum_2007_Normal_Prob | Normal Standardization formula]] for ''Y'' we get <math>Z={Y-np\over \sqrt{np(1-p)}}</math>.
+
Suppose [[AP_Statistics_Curriculum_2007_Distrib_Binomial | <math>Y\sim Binomial(n, p)</math>]] and <math>Y=Y_1+ Y_2+ Y_3+\cdots+ Y_n</math>, where [[AP_Statistics_Curriculum_2007_Distrib_Binomial | <math>Y_k \sim Bernoulli(p)</math>]] , <math>E(Y_k)=p</math>  & <math>Var(Y_k)=p(1-p)</math>. Then  <math>E(Y)=np</math>,  <math>Var(Y)=np(1-p)</math> and <math>SD(Y)= \sqrt{np(1-p)}</math>. If we use the [[AP_Statistics_Curriculum_2007_Normal_Prob | Normal Standardization formula]] for ''Y'' we get <math>Z={Y-np\over \sqrt{np(1-p)}}</math>.
 
    
 
    
 
By [[AP_Statistics_Curriculum_2007_Limits_CLT | CLT]], <math>Z \sim N(0, 1)</math> and <math>Y \sim N [\mu=np, \sigma^2={np(1-p)}]</math>.
 
By [[AP_Statistics_Curriculum_2007_Limits_CLT | CLT]], <math>Z \sim N(0, 1)</math> and <math>Y \sim N [\mu=np, \sigma^2={np(1-p)}]</math>.
Line 8: Line 8:
 
* Note: Normal approximation to Binomial is reasonable when ''p'' and ''(1-p)'' are NOT too small relative to n:
 
* Note: Normal approximation to Binomial is reasonable when ''p'' and ''(1-p)'' are NOT too small relative to n:
 
: <math>np\geq 10</math>
 
: <math>np\geq 10</math>
: <math>n(1-p)\gt 10</math>
+
: <math>n(1-p)> 10</math>
 +
 
 +
* Note that the conditions of [[AP_Statistics_Curriculum_2007_Normal_Prob | Normal]] approximation to [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial]] are complementary to the [[AP_Statistics_Curriculum_2007_Limits_Poisson2Bin | conditions for Poisson approximation of Binomial distribution]].
  
 
===Example===
 
===Example===
The [[SOCR_EduMaterials_Activities_RouletteExperiment | Roulette Game]] has 38 slots 18red 18 black and 2 neutral. Suppose we play 100 games betting on red each time. Would observing 58 wins in the 100 games be considered atypical (susspicious)?
+
The [[SOCR_EduMaterials_Activities_RouletteExperiment | Roulette Game]] has 38 slots: 18 red, 18 black and 2 neutral. Suppose we play 100 games betting on red each time. Would observing 58 wins in the 100 games be considered atypical (suspicious)?
  
 
To answer this question, we need to compute the probability <math>P(Y\geq58)</math>,  where <math>Y\sim Binomial(100, 0.47)</math>, as ''P(Win)=P(Red outcome) = 18/38=0.47''.
 
To answer this question, we need to compute the probability <math>P(Y\geq58)</math>,  where <math>Y\sim Binomial(100, 0.47)</math>, as ''P(Win)=P(Red outcome) = 18/38=0.47''.
  
Since <math>np=47 \geq 10</math> and <math>n(1-p)=53>10</math>, Normal approximation is justified. Let <math>Z=(Y-np)\over \sqrt{np(1-p)} =(58-100*0.47)\sqrt(100*0.47*0.53)=2.2</math>. Thus we can approximate <math>P(Y\geq 58) \approx P(Z\geq 2.2) = 0.0139</math>. The last equation can be directly computed using the [http://socr.ucla.edu/htmls/SOCR_Distributions.html SOCR Normal Distribution Calculator]. You can also use the [http://socr.ucla.edu/htmls/SOCR_Distributions.html SOCR Binomial Distribution Calculator] to compute the exact probability <math>P(Y\geq 58) = 0.0177</math>.
+
Since <math>np=47 \geq 10</math> and <math>n(1-p)=53>10</math>, Normal approximation is justified. Let <math>Z={(Y-np)\over \sqrt{np(1-p)}} ={(58-100*0.47)\over \sqrt{100*0.47*0.53}}=2.2</math>. Thus we can '''approximate''' <math>P(Y\geq 58) \approx P(Z\geq 2.2) = 0.0139</math>. The last equation can be directly computed using the [http://socr.ucla.edu/htmls/SOCR_Distributions.html SOCR Normal Distribution Calculator]. You can also use the [http://socr.ucla.edu/htmls/SOCR_Distributions.html SOCR Binomial Distribution Calculator] to compute the '''exact probability''' <math>P(Y\geq 58) = 0.0177</math>.
  
So why is the [[AP_Statistics_Curriculum_2007_Normal_Std Normal]] approximation to [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial]] distribution necessary in practice?
+
So why is the [[AP_Statistics_Curriculum_2007_Normal_Std | Normal]] approximation to [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial]] distribution necessary in practice?
  
 
Binomial approximation by Normal distribution is useful when no access to the online SOCR resources is available (but we can use printed version of the [http://socr.ucla.edu/Applets.dir/Z-table.html Normal Table] or when N is large and binomial probabilities are difficult to compute precisely!
 
Binomial approximation by Normal distribution is useful when no access to the online SOCR resources is available (but we can use printed version of the [http://socr.ucla.edu/Applets.dir/Z-table.html Normal Table] or when N is large and binomial probabilities are difficult to compute precisely!
Line 36: Line 38:
 
But we can also ''approximate'' this probability using the normal distribution.  We will need the mean and the standard deviation of this [[About_pages_for_SOCR_Distributions | normal distribution]].  These are  
 
But we can also ''approximate'' this probability using the normal distribution.  We will need the mean and the standard deviation of this [[About_pages_for_SOCR_Distributions | normal distribution]].  These are  
 
<math> \mu=np=80\frac{4}{52}=6.154 </math> and  
 
<math> \mu=np=80\frac{4}{52}=6.154 </math> and  
<math> \sigma=\sqrt{80 \frac{4}{52}\frac{48}{52}}=2.383. </math>  Of course this can be obtained directly from the SOCR Binomial applet.  Now, all you need to do is to select the SOCR normal distribution applet and enter for the mean 6.154, and for the standard deviation 2.383.  To obtain the desire probability in the right cut-off box enter 7.5 (using the continuity correction for better approximation).  The approximate probability is <math> P(X \ge 8) \approx 0.2861 </math> (see figure below).
+
<math> \sigma=\sqrt{80 \frac{4}{52}\frac{48}{52}}=2.383. </math>  Of course this can be obtained directly from the SOCR Binomial applet.  Now, all you need to do is to select the SOCR normal distribution applet and enter for the mean 6.154, and for the standard deviation 2.383.  To obtain the desire probability in the right cut-off box, enter 7.5 (using the continuity correction for better approximation).  The approximate probability is <math> P(X \ge 8) \approx 0.2861 </math> (see figure below).
 
<center>[[Image: SOCR_Activities_ExploreDistributions_Christou_figure10.jpg|600px]]</center>
 
<center>[[Image: SOCR_Activities_ExploreDistributions_Christou_figure10.jpg|600px]]</center>
  
 
<hr>
 
<hr>
===References===
+
 
 +
===[[EBook_Problems_Limits_Norm2Bin|Problems]]===
  
 
<hr>
 
<hr>
 
* SOCR Home page: http://www.socr.ucla.edu
 
* SOCR Home page: http://www.socr.ucla.edu
  
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=AP_Statistics_Curriculum_2007_Limits_Norm2Bin}}
+
"{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=AP_Statistics_Curriculum_2007_Limits_Norm2Bin}}

Latest revision as of 11:44, 3 March 2020

General Advance-Placement (AP) Statistics Curriculum - Normal Distribution as Approximation to Binomial Distribution

Normal Approximation to Binomial Distribution

Suppose \(Y\sim Binomial(n, p)\) and \(Y=Y_1+ Y_2+ Y_3+\cdots+ Y_n\), where \(Y_k \sim Bernoulli(p)\) , \(E(Y_k)=p\) & \(Var(Y_k)=p(1-p)\). Then \(E(Y)=np\), \(Var(Y)=np(1-p)\) and \(SD(Y)= \sqrt{np(1-p)}\). If we use the Normal Standardization formula for Y we get \(Z={Y-np\over \sqrt{np(1-p)}}\).

By CLT, \(Z \sim N(0, 1)\) and \(Y \sim N [\mu=np, \sigma^2={np(1-p)}]\).

  • Note: Normal approximation to Binomial is reasonable when p and (1-p) are NOT too small relative to n:

\[np\geq 10\] \[n(1-p)> 10\]

Example

The Roulette Game has 38 slots: 18 red, 18 black and 2 neutral. Suppose we play 100 games betting on red each time. Would observing 58 wins in the 100 games be considered atypical (suspicious)?

To answer this question, we need to compute the probability \(P(Y\geq58)\), where \(Y\sim Binomial(100, 0.47)\), as P(Win)=P(Red outcome) = 18/38=0.47.

Since \(np=47 \geq 10\) and \(n(1-p)=53>10\), Normal approximation is justified. Let \(Z={(Y-np)\over \sqrt{np(1-p)}} ={(58-100*0.47)\over \sqrt{100*0.47*0.53}}=2.2\). Thus we can approximate \(P(Y\geq 58) \approx P(Z\geq 2.2) = 0.0139\). The last equation can be directly computed using the SOCR Normal Distribution Calculator. You can also use the SOCR Binomial Distribution Calculator to compute the exact probability \(P(Y\geq 58) = 0.0177\).

So why is the Normal approximation to Binomial distribution necessary in practice?

Binomial approximation by Normal distribution is useful when no access to the online SOCR resources is available (but we can use printed version of the Normal Table or when N is large and binomial probabilities are difficult to compute precisely!

Activities

Graph and comment on the shape of binomial with \( n=20, p=0.1 \) and \( n=20, p=0.9 \). Now, keep \( n=20 \) but change \( p=0.45 \). What do you observe now? How about when \( n=80, p=0.1 \). See the four figures below.

SOCR Activities ExploreDistributions Christou figure5.jpg SOCR Activities ExploreDistributions Christou figure6.jpg
SOCR Activities ExploreDistributions Christou figure7.jpg SOCR Activities ExploreDistributions Christou figure8.jpg

What is your conclusion on the shape of the Binomial distribution in relation to its parameters \( n, p \)? Clearly when \( n \) is large and \( p \) small or large the result is a bell-shaped distribution. When \( n \) is small (10-20) we still get approximately a bell-shaped distribution as long as \( p \approx 0.5 \). Because of this feature of the Binomial distribution we can approximate Binomial distributions using the normal distribution when the above requirements hold. Here is one example: Eighty cards are drawn with replacement from the standard 52-card deck. Find the exact probability that at least 8 aces are obtained. This can be computed using the formula \( P(X \ge 8)=\sum_{x=8}^{80}(\frac{4}{52})^x (\frac{48}{52})^{80-x}=0.2725 \).

Much easier we can use SOCR to compute this probability (see figure below).

SOCR Activities ExploreDistributions Christou figure9.jpg

But we can also approximate this probability using the normal distribution. We will need the mean and the standard deviation of this normal distribution. These are \( \mu=np=80\frac{4}{52}=6.154 \) and \( \sigma=\sqrt{80 \frac{4}{52}\frac{48}{52}}=2.383. \) Of course this can be obtained directly from the SOCR Binomial applet. Now, all you need to do is to select the SOCR normal distribution applet and enter for the mean 6.154, and for the standard deviation 2.383. To obtain the desire probability in the right cut-off box, enter 7.5 (using the continuity correction for better approximation). The approximate probability is \( P(X \ge 8) \approx 0.2861 \) (see figure below).

SOCR Activities ExploreDistributions Christou figure10.jpg

Problems


"-----


Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif