Difference between revisions of "Multiple Independent Sample Kruskal Wallis Test"
m (Text replacement - "{{translate|pageName=http://wiki.stat.ucla.edu/socr/" to ""{{translate|pageName=http://wiki.socr.umich.edu/") |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <pre> | ||
/* | /* | ||
Line 5: | Line 6: | ||
Source of example data: | Source of example data: | ||
Conover, W. J. Practical nonparametric statistics. | Conover, W. J. Practical nonparametric statistics. | ||
+ | In our code, we use the exact method while the Conover book uses approximation. | ||
+ | The calculation formula are adapted from this reference. | ||
*/ | */ | ||
Line 29: | Line 32: | ||
/* dump all the columns you need to the data object using 'data.appendX' comment. | /* dump all the columns you need to the data object using 'data.appendX' comment. | ||
dump as many as you'd like. | dump as many as you'd like. | ||
− | but duplicate append will cause problem, so DO NOT append the same column more than once please. | + | but duplicate append will cause problem, so DO NOT append the same column more than once, please. |
*/ | */ | ||
data.appendX("Column_A", xA, DataType.QUANTITATIVE); | data.appendX("Column_A", xA, DataType.QUANTITATIVE); | ||
Line 73: | Line 76: | ||
} | } | ||
} | } | ||
+ | </pre> | ||
+ | |||
+ | |||
+ | "{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=Multiple_Independent_Sample_Kruskal_Wallis_Test}} |
Latest revision as of 15:06, 3 March 2020
/* january 2007. Annie Che <chea@stat.ucla.edu>. UCLA Statistics. Source of example data: Conover, W. J. Practical nonparametric statistics. In our code, we use the exact method while the Conover book uses approximation. The calculation formula are adapted from this reference. */ package edu.ucla.stat.SOCR.analyses.example; import java.util.HashMap; import edu.ucla.stat.SOCR.analyses.data.Data; import edu.ucla.stat.SOCR.analyses.data.DataType; import edu.ucla.stat.SOCR.analyses.result.TwoIndependentKruskalWallisResult; import edu.ucla.stat.SOCR.analyses.model.AnalysisType; public class MultiIndependentKruskalWallisExample { public static void main(String args[]) { double[] xA = {83, 91, 94, 89, 89, 96, 91, 92, 90}; double[] xB = {91, 90, 81, 83, 84, 83, 88, 91, 89, 84}; double[] xC = {101, 100, 91, 93, 96, 95, 94}; double[] xD = {78, 82, 81, 77, 79, 81, 80, 81}; // you'll need to instantiate a data instance first. Data data = new Data(); /* dump all the columns you need to the data object using 'data.appendX' comment. dump as many as you'd like. but duplicate append will cause problem, so DO NOT append the same column more than once, please. */ data.appendX("Column_A", xA, DataType.QUANTITATIVE); data.appendX("Column_B", xB, DataType.QUANTITATIVE); data.appendX("Column_C", xC, DataType.QUANTITATIVE); data.appendX("Column_D", xD, DataType.QUANTITATIVE); // then use the following line to get the result. try { TwoIndependentKruskalWallisResult result = (TwoIndependentKruskalWallisResult)data.getAnalysis(AnalysisType.TWO_INDEPENDENT_KRUSKAL_WALLIS); if (result != null) { // Getting the model's parameter estiamtes, summary, and statistics. String[] groupNames = result.getGroupNameList(); double[] rankSum = result.getRankSumList(); String tStat = result.getTStat(); String s2 = result.getSSqaured(); // i.e. s * s String cp = result.getCriticalValue();; String dataAndRankString = result.getDataRankInformation();; int[] groupCount = result.getGroupCount();; String df = result.getDegreesOfFreedom();; String[] multipleComparisonInfo = result.getMultipleComparisonInformation();; String multipleComparisonHeader = result.getMultipleComparisonHeader();; System.out.println("\n\nSIGNIFICANCE LEVEL = 0.05"); System.out.println("\nDEGREES OF FREEDOM = " + df); System.out.println("\nCRITICAL VALUE = " + cp); System.out.println("\nT-STAITISTIC = " + tStat); System.out.println("\nS * S = " + s2); System.out.println("\n\nNotation: Ri -- Rank of group i; ni -- size of group i.\n"); System.out.println("\n" + multipleComparisonHeader + "\n"); for (int i = 0; i <multipleComparisonInfo.length; i++) { if (multipleComparisonInfo[i] != null) System.out.println("\n"+multipleComparisonInfo[i] ); } } } catch (Exception e) { System.out.println(e); } } }
"-----
Translate this page: