Difference between revisions of "AP Statistics Curriculum 2007 Estim S Mean"

From SOCR
Jump to: navigation, search
 
m (Text replacement - "{{translate|pageName=http://wiki.stat.ucla.edu/socr/" to ""{{translate|pageName=http://wiki.socr.umich.edu/")
 
(20 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Estimating a Population Mean: Samll Samples==
+
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Estimating a Population Mean: Small Samples==
  
=== Estimating a Population Mean: Small Samples===
+
Now we discuss estimation when the sample-sizes are small, typically < 30 observations. Naturally, the point estimates are less precise and the interval estimates produce wider intervals, compared to the case of [[AP_Statistics_Curriculum_2007_Estim_L_Mean |large-samples]].
Example on how to attach images to Wiki documents in included below (this needs to be replaced by an appropriate figure for this section)!
 
<center>[[Image:AP_Statistics_Curriculum_2007_IntroVar_Dinov_061407_Fig1.png|500px]]</center>
 
  
===Approach===
+
=== Point Estimation of a Population Mean===
Models & strategies for solving the problem, data understanding & inference.  
+
The population mean may also be estimated by the sample average using a small sample. That is the sample average <math>\overline{X_n}={1\over n}\sum_{i=1}^n{X_i}</math>, constructed from a random sample of the process {<math>X_1, X_2, X_3, \cdots , X_n</math>}, which is an [http://en.wikipedia.org/wiki/Estimator_bias unbiased] estimate of the population mean <math>\mu</math>, if it exists! Note that the [[AP_Statistics_Curriculum_2007_EDA_Center | sample average may be susceptible to outliers]].
  
* TBD
+
===Interval Estimation of a Population Mean===
 +
For small samples, interval estimations of the population means (or '''Confidence Intervals''') are constructed as follows. Choose a confidence level <math>(1-\alpha)100%</math>, where <math>\alpha</math> is small (e.g., 0.1, 0.05, 0.025, 0.01, 0.001, etc.). Then a <math>(1-\alpha)100%</math> confidence interval for <math>\mu</math> is defined in terms of the [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html T-distribution]:
 +
: <math>CI(\alpha): \overline{x} \pm t_{\alpha\over 2} E.</math>
  
===Model Validation===
+
* The '''Error''' term, E, is defined as
Checking/affirming underlying assumptions.
+
<math>E = \begin{cases}{\sigma\over\sqrt{n}},& \texttt{for-known}-\sigma,\\
 +
{SE},& \texttt{for-unknown}-\sigma.\end{cases}</math>
  
* TBD
+
* The '''Standard Error''' of the estimate <math>\overline {x}</math> is obtained by replacing the unknown population standard deviation by the sample standard deviation:
 +
<math>SE(\overline {x}) = {1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}</math>
  
===Computational Resources: Internet-based SOCR Tools===
+
* <math>t_{\alpha\over 2}</math> is the [[AP_Statistics_Curriculum_2007_StudentsT |Critical Value for the T(df=sample-size -1) distribution at <math>{\alpha\over 2}</math>]].
* TBD
 
  
===Examples===
+
===Assumptions===
Computer simulations and real observed data.
+
To use the small-sample method for constructing a confidence interval for the population mean, we must have evidence that the data we observed and used for the point and interval estimates come from a distribution which is (approximately) ''Normal''. If this assumption is violated, the interval estimate we compute may be significantly misrepresenting the real confidence interval!
  
* TBD
+
===Example===
   
+
To parallel the example in the [[AP_Statistics_Curriculum_2007#Estimating_a_Population_Mean:_Large_Samples |large sample case]], we consider again the ''number of sentences per advertisement'' as a measure of readability for magazine advertisements. A random sample of the number of sentences found in 10 magazine advertisements is listed.  Use this sample to find ''point estimate'' for the population mean <math>\mu</math> ('''sample-mean=22.1, sample-variance=737.88 and sample-SD=27.16390579''').
===Hands-on activities===
+
<center>
Step-by-step practice problems.
+
{| class="wikitable" style="text-align:center; width:75%" border="1"
 +
|-
 +
| 16 || 9 ||  14 ||  11||  17 ||  12|| 99 || 18 || 13|| 12
 +
|}
 +
</center>
  
* TBD
+
A ''confidence interval estimate'' of <math>\mu</math> is a range of values used to estimate a population parameter (interval estimates are normally used more than point estimates because it is very unlikely that the sample mean would match exactly with the population mean) The interval estimate uses a margin of error about the point estimate. 
 +
 
 +
Before you find an interval estimate, you should first determine how confident you want to be that your interval estimate contains the population mean. 
 +
 
 +
* [[AP_Statistics_Curriculum_2007_StudentsT | Recall these critical values for Student's T Distribution]]:
 +
:80% confidence (0.80), <math>{\alpha \over 2}=0.1</math>, [http://socr.ucla.edu/Applets.dir/T-table.html t<sub>(df=9)</sub> = 1.383]
 +
:90% confidence (0.90), <math>{\alpha \over 2}=0.05</math>, [http://socr.ucla.edu/Applets.dir/T-table.html t<sub>(df=9)</sub> = 1.833]
 +
:95% confidence (0.95), <math>{\alpha \over 2}=0.025</math>, [http://socr.ucla.edu/Applets.dir/T-table.html t<sub>(df=9)</sub> = 2.262]
 +
:99% confidence (0.99), <math>{\alpha \over 2}=0.005</math>, [http://socr.ucla.edu/Applets.dir/T-table.html t<sub>(df=9)</sub> = 3.250]
 +
 
 +
Notice that for a fixed <math>\alpha</math>, the ''t-critical values'' (for any degree-of-freedom) exceeds the [[AP_Statistics_Curriculum_2007#Estimating_a_Population_Mean:_Large_Samples |corresponding normal z-critical values]], which are used in the large-sample interval estimation. The [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html SOCR Student's T distribution calculator] may be used to obtain accurate critical and probability values for the T distribution.
 +
 
 +
<center>[[Image:SOCR_EBook_Dinov_Estimates_L_Mean_060608_Fig4.jpg|500px]]</center>
 +
 
 +
====Known Variance====
 +
Suppose that we know the variance for the ''number of sentences per advertisement'' example above is known to be 256 (so the population standard deviation is <math>\sigma=16</math>).
 +
 
 +
* For <math>{\alpha \over 2}=0.1</math>, the <math>80% CI(\mu)</math> is constructed by:
 +
<center> <math>\overline{x}\pm 1.383{16\over \sqrt{10}}=22.1 \pm 1.28{16\over \sqrt{10}}=[15.10 ; 29.10]</math></center>
 +
 
 +
* For <math>{\alpha \over 2}=0.05</math>, the <math>90% CI(\mu)</math> is constructed by:
 +
<center> <math>\overline{x}\pm 1.833{16\over \sqrt{10}}=22.1 \pm 1.833{16\over \sqrt{10}}=[12.83 ; 31.37]</math></center>
 +
 
 +
* For <math>{\alpha \over 2}=0.005</math>, the <math>99% CI(\mu)</math> is constructed by:
 +
<center> <math>\overline{x}\pm 3.250{16\over \sqrt{10}}=22.1 \pm 3.250{16\over \sqrt{10}}=[5.66 ; 38.54]</math></center>
 +
 
 +
Notice the increase of the CI's (directly related to the decrease of <math>\alpha</math>) reflecting our choice for higher confidence.
 +
 
 +
====Unknown Variance====
 +
Suppose that we do '''not''' know the variance for the ''number of sentences per advertisement'' but use the sample variance 737.88 as an estimate (so the sample standard deviation is <math>s=\hat{\sigma}=27.16390579</math>).
 +
 
 +
* For <math>{\alpha \over 2}=0.1</math>, the <math>80% CI(\mu)</math> is constructed by:
 +
<center> <math>\overline{x}\pm 1.383{27.16390579\over \sqrt{10}}=22.1 \pm 1.383{27.16390579\over \sqrt{10}}=[10.22 ; 33.98]</math></center>
 +
 
 +
* For <math>{\alpha \over 2}=0.05</math>, the <math>90% CI(\mu)</math> is constructed by:
 +
<center> <math>\overline{x}\pm 1.833{27.16390579\over \sqrt{10}}=22.1 \pm 1.833{27.16390579\over \sqrt{10}}=[6.35 ; 37.85]</math></center>
 +
 
 +
* For <math>{\alpha \over 2}=0.005</math>, the <math>99% CI(\mu)</math> is constructed by:
 +
<center> <math>\overline{x}\pm 3.250{27.16390579 \over \sqrt{10}}=22.1 \pm 3.250{27.16390579\over \sqrt{10}}=[-5.82 ; 50.02]</math></center>
 +
 
 +
Notice the increase of the CI's (directly related to the decrease of <math>\alpha</math>) reflecting our choice for higher confidence.
 +
 
 +
===Hands-on Activities===
 +
*See the [[SOCR_EduMaterials_Activities_CoinfidenceIntervalExperiment | SOCR Confidence Interval Experiment]].
 +
* Sample statistics, like the sample-mean and the sample-variance, may be easily obtained using [http://socr.ucla.edu/htmls/SOCR_Charts.html SOCR Charts]. The images below illustrate this functionality (based on the '''Bar-Chart''' and '''Index-Chart''') using the 30 observations of the number of sentences per advertisement, [[AP_Statistics_Curriculum_2007_Estim_L_Mean#Example | reported above]].
 +
<center>[[Image:SOCR_EBook_Dinov_Estimates_L_Mean_020208_Fig3.jpg|400px]]
 +
[[Image:SOCR_EBook_Dinov_Estimates_L_Mean_020208_Fig4.jpg|400px]]</center>
  
 
<hr>
 
<hr>
===References===
+
 
* TBD
+
===[[EBook_Problems_Estim_S_Mean|Problems]]===
  
 
<hr>
 
<hr>
 
* SOCR Home page: http://www.socr.ucla.edu
 
* SOCR Home page: http://www.socr.ucla.edu
  
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=AP_Statistics_Curriculum_2007_Estim_S_Mean}}
+
"{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=AP_Statistics_Curriculum_2007_Estim_S_Mean}}

Latest revision as of 16:00, 3 March 2020

General Advance-Placement (AP) Statistics Curriculum - Estimating a Population Mean: Small Samples

Now we discuss estimation when the sample-sizes are small, typically < 30 observations. Naturally, the point estimates are less precise and the interval estimates produce wider intervals, compared to the case of large-samples.

Point Estimation of a Population Mean

The population mean may also be estimated by the sample average using a small sample. That is the sample average \(\overline{X_n}={1\over n}\sum_{i=1}^n{X_i}\), constructed from a random sample of the process {\(X_1, X_2, X_3, \cdots , X_n\)}, which is an unbiased estimate of the population mean \(\mu\), if it exists! Note that the sample average may be susceptible to outliers.

Interval Estimation of a Population Mean

For small samples, interval estimations of the population means (or Confidence Intervals) are constructed as follows. Choose a confidence level \((1-\alpha)100%\), where \(\alpha\) is small (e.g., 0.1, 0.05, 0.025, 0.01, 0.001, etc.). Then a \((1-\alpha)100%\) confidence interval for \(\mu\) is defined in terms of the T-distribution: \[CI(\alpha): \overline{x} \pm t_{\alpha\over 2} E.\]

  • The Error term, E, is defined as

\(E = \begin{cases}{\sigma\over\sqrt{n}},& \texttt{for-known}-\sigma,\\ {SE},& \texttt{for-unknown}-\sigma.\end{cases}\)

  • The Standard Error of the estimate \(\overline {x}\) is obtained by replacing the unknown population standard deviation by the sample standard deviation\[SE(\overline {x}) = {1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}\]

Assumptions

To use the small-sample method for constructing a confidence interval for the population mean, we must have evidence that the data we observed and used for the point and interval estimates come from a distribution which is (approximately) Normal. If this assumption is violated, the interval estimate we compute may be significantly misrepresenting the real confidence interval!

Example

To parallel the example in the large sample case, we consider again the number of sentences per advertisement as a measure of readability for magazine advertisements. A random sample of the number of sentences found in 10 magazine advertisements is listed. Use this sample to find point estimate for the population mean \(\mu\) (sample-mean=22.1, sample-variance=737.88 and sample-SD=27.16390579).

16 9 14 11 17 12 99 18 13 12

A confidence interval estimate of \(\mu\) is a range of values used to estimate a population parameter (interval estimates are normally used more than point estimates because it is very unlikely that the sample mean would match exactly with the population mean) The interval estimate uses a margin of error about the point estimate.

Before you find an interval estimate, you should first determine how confident you want to be that your interval estimate contains the population mean.

80% confidence (0.80), \({\alpha \over 2}=0.1\), t(df=9) = 1.383
90% confidence (0.90), \({\alpha \over 2}=0.05\), t(df=9) = 1.833
95% confidence (0.95), \({\alpha \over 2}=0.025\), t(df=9) = 2.262
99% confidence (0.99), \({\alpha \over 2}=0.005\), t(df=9) = 3.250

Notice that for a fixed \(\alpha\), the t-critical values (for any degree-of-freedom) exceeds the corresponding normal z-critical values, which are used in the large-sample interval estimation. The SOCR Student's T distribution calculator may be used to obtain accurate critical and probability values for the T distribution.

SOCR EBook Dinov Estimates L Mean 060608 Fig4.jpg

Known Variance

Suppose that we know the variance for the number of sentences per advertisement example above is known to be 256 (so the population standard deviation is \(\sigma=16\)).

  • For \({\alpha \over 2}=0.1\), the \(80% CI(\mu)\) is constructed by:
\(\overline{x}\pm 1.383{16\over \sqrt{10}}=22.1 \pm 1.28{16\over \sqrt{10}}=[15.10 ; 29.10]\)
  • For \({\alpha \over 2}=0.05\), the \(90% CI(\mu)\) is constructed by:
\(\overline{x}\pm 1.833{16\over \sqrt{10}}=22.1 \pm 1.833{16\over \sqrt{10}}=[12.83 ; 31.37]\)
  • For \({\alpha \over 2}=0.005\), the \(99% CI(\mu)\) is constructed by:
\(\overline{x}\pm 3.250{16\over \sqrt{10}}=22.1 \pm 3.250{16\over \sqrt{10}}=[5.66 ; 38.54]\)

Notice the increase of the CI's (directly related to the decrease of \(\alpha\)) reflecting our choice for higher confidence.

Unknown Variance

Suppose that we do not know the variance for the number of sentences per advertisement but use the sample variance 737.88 as an estimate (so the sample standard deviation is \(s=\hat{\sigma}=27.16390579\)).

  • For \({\alpha \over 2}=0.1\), the \(80% CI(\mu)\) is constructed by:
\(\overline{x}\pm 1.383{27.16390579\over \sqrt{10}}=22.1 \pm 1.383{27.16390579\over \sqrt{10}}=[10.22 ; 33.98]\)
  • For \({\alpha \over 2}=0.05\), the \(90% CI(\mu)\) is constructed by:
\(\overline{x}\pm 1.833{27.16390579\over \sqrt{10}}=22.1 \pm 1.833{27.16390579\over \sqrt{10}}=[6.35 ; 37.85]\)
  • For \({\alpha \over 2}=0.005\), the \(99% CI(\mu)\) is constructed by:
\(\overline{x}\pm 3.250{27.16390579 \over \sqrt{10}}=22.1 \pm 3.250{27.16390579\over \sqrt{10}}=[-5.82 ; 50.02]\)

Notice the increase of the CI's (directly related to the decrease of \(\alpha\)) reflecting our choice for higher confidence.

Hands-on Activities

  • See the SOCR Confidence Interval Experiment.
  • Sample statistics, like the sample-mean and the sample-variance, may be easily obtained using SOCR Charts. The images below illustrate this functionality (based on the Bar-Chart and Index-Chart) using the 30 observations of the number of sentences per advertisement, reported above.
SOCR EBook Dinov Estimates L Mean 020208 Fig3.jpg SOCR EBook Dinov Estimates L Mean 020208 Fig4.jpg

Problems


"-----


Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif