Difference between revisions of "SOCR News Biophysics 2020 Spacekime"

From SOCR
Jump to: navigation, search
(Created page with "== SOCR News & Events: UM Biophysics Seminar == 150px|thumbnail|right| [https://socr.umich.edu SOCR Resource] ==Logistics==...")
 
(Logistics)
Line 6: Line 6:
 
==Logistics==
 
==Logistics==
 
* [https://lsa.umich.edu/physics/news-events/seminars-colloquia/biophysics-seminars.html UM Biophysics Seminar Series]
 
* [https://lsa.umich.edu/physics/news-events/seminars-colloquia/biophysics-seminars.html UM Biophysics Seminar Series]
* '''Date/Times''': Friday, September 11, 2020, 12 Noon (ET)
+
* '''Date/Times''': Friday, September 11, 2020, 12 Noon ET (GMT-4)
 
* '''Zoom''': TBD
 
* '''Zoom''': TBD
 
* '''Title''':  ''Data Science, Time Complexity, and Spacekime Analytics''
 
* '''Title''':  ''Data Science, Time Complexity, and Spacekime Analytics''
 
* '''Presenter''':  [http://umich.edu/~dinov Ivo Dinov], joint work with [http://socr.umich.edu/people/Milen_Velev.html Milen V. Velev] (Burgas University)
 
* '''Presenter''':  [http://umich.edu/~dinov Ivo Dinov], joint work with [http://socr.umich.edu/people/Milen_Velev.html Milen V. Velev] (Burgas University)
[[Image:Spacekime_TCIU_Trivial_PolarCylinder_WaveEqu_Phase.png|150px|thumbnail|right| [https://www.socr.umich.edu/TCIU/ Spacekime/TCIU Project] ]]
+
[[Image:Spacekime_TCIU_NonTrivial_PolarCylinder_WqaveEqu_Phase_Anim.gif|150px|thumbnail|right| [https://www.socr.umich.edu/TCIU/ Spacekime/TCIU Project] ]]
 
* '''Abstract''': Digital information flows impact all human experiences.  The proliferation of large, heterogeneous, and spatio-temporal data requires novel approaches for managing, modeling, analyzing, interpreting, and visualizing complex information. The scientific community is developing, validating, productizing, and supporting novel mathematical techniques, advanced statistical computing algorithms, transdisciplinary tools, and effective artificial intelligence apps.  
 
* '''Abstract''': Digital information flows impact all human experiences.  The proliferation of large, heterogeneous, and spatio-temporal data requires novel approaches for managing, modeling, analyzing, interpreting, and visualizing complex information. The scientific community is developing, validating, productizing, and supporting novel mathematical techniques, advanced statistical computing algorithms, transdisciplinary tools, and effective artificial intelligence apps.  
  
Line 16: Line 16:
  
 
: We will present several direct data science applications of spacekime analytics using simulated data, clinical observations (e.g., UK Biobank), and environmental air quality data.
 
: We will present several direct data science applications of spacekime analytics using simulated data, clinical observations (e.g., UK Biobank), and environmental air quality data.
 
  
 
==SOCR Background==
 
==SOCR Background==

Revision as of 10:54, 22 August 2020

SOCR News & Events: UM Biophysics Seminar


Logistics

Error creating thumbnail: /bin/bash: /usr/bin/convert: No such file or directory Error code: 127
  • Abstract: Digital information flows impact all human experiences. The proliferation of large, heterogeneous, and spatio-temporal data requires novel approaches for managing, modeling, analyzing, interpreting, and visualizing complex information. The scientific community is developing, validating, productizing, and supporting novel mathematical techniques, advanced statistical computing algorithms, transdisciplinary tools, and effective artificial intelligence apps.
Spacekime analytics is a new technique for modeling high-dimensional longitudinal data. This approach relies on extending the notions of time, events, particles, and wavefunctions to complex-time (kime), complex-events (kevents), data, and inference-functions. We will illustrate how the kime-magnitude (longitudinal time order) and kime-direction (phase) affect the subsequent predictive analytics and the induced scientific inference. The mathematical foundation of spacekime calculus reveals interesting statistical implications including inferential uncertainty and a Bayesian formulation of spacekime analytics. Complexifying time allows the lifting of all commonly observed processes (e.g., time-series) from the classical 4D Minkowski spacetime to a 5D spacekime manifold (e.g., kime-surfaces), where a number of mathematical problems remain to be solved.
We will present several direct data science applications of spacekime analytics using simulated data, clinical observations (e.g., UK Biobank), and environmental air quality data.

SOCR Background

SOCR Demos


References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif