Difference between revisions of "SOCR EduMaterials Activities PowerTransformFamily Graphs"

From SOCR
Jump to: navigation, search
m ( SOCR Educational Materials - Activities - SOCR POwer Transformation Family Graphing Activity)
m (This is activity demonstrates the usage, effects and properties of the modified power transformation family using graphs of scatter plots)
Line 3: Line 3:
 
== This is activity demonstrates the usage, effects and properties of the modified power transformation family using graphs of scatter plots ==
 
== This is activity demonstrates the usage, effects and properties of the modified power transformation family using graphs of scatter plots ==
  
* '''Background''': The '''power transformation family''' is often used for transforming data for the perpose of making it more Normal-like. The power transformation is defined by
+
* '''Background''': The '''power transformation family''' is often used for transforming data for the perpose of making it more Normal-like. The power transformation is continuously varying with respect to the power parameter <math>\lambda</math> and defined for all <math>y>0</math> by:
 
<center><math>y^{(\lambda)} = \left \{ (y^{\lambda}-1)/{\lambda}, if \lambda \neq 0; and \log{y}, if \lambda = 0  \right\} </math> </center>
 
<center><math>y^{(\lambda)} = \left \{ (y^{\lambda}-1)/{\lambda}, if \lambda \neq 0; and \log{y}, if \lambda = 0  \right\} </math> </center>
  
* '''Exercise 1''': ...
+
* '''Exercise 1''': TBD
  
 
<center>[[Image:SOCR_Activities_CardCoinSampling_Dinov_092206_Fig7.jpg|300px]]</center>
 
<center>[[Image:SOCR_Activities_CardCoinSampling_Dinov_092206_Fig7.jpg|300px]]</center>

Revision as of 23:01, 21 February 2007

SOCR Educational Materials - Activities - SOCR Power Transformation Family Graphing Activity

This is activity demonstrates the usage, effects and properties of the modified power transformation family using graphs of scatter plots

  • Background: The power transformation family is often used for transforming data for the perpose of making it more Normal-like. The power transformation is continuously varying with respect to the power parameter \(\lambda\) and defined for all \(y>0\) by:
\(y^{(\lambda)} = \left \{ (y^{\lambda}-1)/{\lambda}, if \lambda \neq 0; and \log{y}, if \lambda = 0 \right\} \)
  • Exercise 1: TBD
Error creating thumbnail: File missing

References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif