Difference between revisions of "AP Statistics Curriculum 2007 EDA Var"

From SOCR
Jump to: navigation, search
(Quartiles and IQR)
(Variance and Standard Deviation)
Line 32: Line 32:
  
 
In particular, the '''variance''' is defined as:
 
In particular, the '''variance''' is defined as:
<center><math>{1 \over n-1}\sum_{i=1}^n{|y_i - \overline{y}|^2}.</math></center>
+
<center><math>{1 \over n-1}\sum_{i=1}^n{(y_i - \overline{y})^2}.</math></center>
  
 
And the '''standard deviation''' is defined as:
 
And the '''standard deviation''' is defined as:
<center><math>\sqrt{{1 \over n-1}\sum_{i=1}^n{|y_i - \overline{y}|^2}}.</math></center>
+
<center><math>\sqrt{{1 \over n-1}\sum_{i=1}^n{(y_i - \overline{y})^2}}.</math></center>
  
 
For the long-jump sample of 8 measurements, the standard deviation is:
 
For the long-jump sample of 8 measurements, the standard deviation is:

Revision as of 18:51, 8 February 2008

General Advance-Placement (AP) Statistics Curriculum - Measures of Variation

Measures of Variation and Dispersion

There are many measures of (population or sample) variation, e.g., the range, the variance, the standard deviation, mean absolute deviation, etc. These are used to assess the dispersion or spread of the population.

Suppose we are interested in the long-jump performance of some students. We can carry an experiment by randomly selecting 8 male statistics students and ask them to perform the standing long jump. In reality every student participated, but for the ease of calculations below we will focus on these eight students. The long jumps were as follows:

Long-Jump (inches) Sample Data
60 64 68 74 76 78 80 106

Range

The range is the easiest measure of dispersion to calculate, yet, perhaps not the best measure. The Range = max - min. For example, for the Long Jump data, the range is calculated by:

Range = 106 – 60 = 46.

Note that the range is only sensitive to the extreme values of a sample and ignores all other information. So, two completely different distributions may have the same range.

Quartiles and IQR

The first quartile (\(Q_1\)) and the third quartile (\(Q_3\)) are defined values that split the dataset into bottom-25% vs. top-75% and bottom-75% vs. top-25%, respectively. This the inter-quartile range (IQR), which is the difference \(Q_3 - Q_1\), represents the central 50% for the data and can be considered as a measure of data dispersion or variation. The wider the IQR is the more variant the data is.

For example, \(Q_1=(64+68)/2=66\), \(Q_3=(78+80)/2=79\) and \(IQR=Q_3-Q_1=13\), for the Long-Jump data shown above. Thus we expect the middle half of all long jumps (for that population) to be between 66 and 79 inches.

Variance and Standard Deviation

The logic behind the variance and standard deviation measures is to measure the difference between each observation and the mean (i.e., dispersion). Suppose we have n > 1 observations, \(\left \{ y_1, y_2, y_3, ..., y_n \right \}\). The deviation of the \(i^{th}\) measurement, \(y_i\), from the mean (\(\overline{y}\)) is defined by \((y_i - \overline{y})\).

Does the average of these deviations seem like a reasonable way to find an average deviation for the sample or the population? No, because the sum of all deviations is trivial:

\(\sum_{i=1}^n{(y_i - \overline{y})}=0.\)

To solve this problem we employ different versions of the mean absolute deviation:

\({1 \over n-1}\sum_{i=1}^n{|y_i - \overline{y}|}.\)

In particular, the variance is defined as:

\({1 \over n-1}\sum_{i=1}^n{(y_i - \overline{y})^2}.\)

And the standard deviation is defined as:

\(\sqrt{{1 \over n-1}\sum_{i=1}^n{(y_i - \overline{y})^2}}.\)

For the long-jump sample of 8 measurements, the standard deviation is:

\(\sqrt{{1 \over 8-1} \left \{(60-75.75)^2 + (64-75.75)^2 + (68-75.75)^2 + (74-75.75)^2 + (76-75.75)^2 + (78-75.75)^2 + (80-75.75)^2 + (106-75.75)^2 \right \} } = 14.079.\)

Activities

Try to pair each of the 4 samples whose numerical summaries are reported below with one of the 4 frequency plots below. Explain your answers.

Long-Jump (inches) Sample Data
Sample Mean Median StdDev
A 4.688 5.000 1.493
B 4.000 4.000 1.633
C 3.933 4.000 1.387
D 4.000 4.000 2.075
SOCR EBook Dinov EDA 012708 Fig10.jpg


Notes

  • Some software packages may use \({1 \over n}\), instead of the \({1 \over n-1}\), which we used above. Note that for large sample-sizes this difference becomes increasingly smaller. Also, there are theoretical properties of the sample variance, as defined above (e.g., sample-variance is an unbiased estimate of the population-variance!)

References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif