Difference between revisions of "AP Statistics Curriculum 2007 Infer 2Proportions"

From SOCR
Jump to: navigation, search
(Genders of Siblings Example)
( General Advance-Placement (AP) Statistics Curriculum - Inferences about Two Proportions)
Line 1: Line 1:
 
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Inferences about Two Proportions ==
 
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Inferences about Two Proportions ==
  
=== Testing for equality of Two Proportions===
+
=== Testing for Equality of Two Proportions===
  
 
Suppose we have two populations and we are interested in estimating whether the proportions of subjects that have certain characteristic of interest (e.g., fixed gender) in each population are equal. To make this inference we obtain two samples {<math>X_1, X_2, X_3, \cdots, X_n</math>} and {<math>Y_1, Y_2, Y_3, \cdots, Y_k</math>}, where each <math>X_i</math> and <math>Y_i</math> represents whether the ''i<sup>th</sup>'' observation in the sample had the characteristic of interest. That is
 
Suppose we have two populations and we are interested in estimating whether the proportions of subjects that have certain characteristic of interest (e.g., fixed gender) in each population are equal. To make this inference we obtain two samples {<math>X_1, X_2, X_3, \cdots, X_n</math>} and {<math>Y_1, Y_2, Y_3, \cdots, Y_k</math>}, where each <math>X_i</math> and <math>Y_i</math> represents whether the ''i<sup>th</sup>'' observation in the sample had the characteristic of interest. That is
Line 21: Line 21:
 
: '''Corrected Proportions''': <math>SE_{\tilde{p_x}-\tilde{p_y}} = \sqrt{SE_{\tilde{p_x}}^2 + SE_{\tilde{p_y}}^2}= \sqrt{ {\tilde{p_x}(1-\tilde{p_x})\over n+z_{\alpha \over 2}^2} + {\tilde{p_y}(1-\tilde{p_y})\over k+z_{\alpha \over 2}^2}}.</math>
 
: '''Corrected Proportions''': <math>SE_{\tilde{p_x}-\tilde{p_y}} = \sqrt{SE_{\tilde{p_x}}^2 + SE_{\tilde{p_y}}^2}= \sqrt{ {\tilde{p_x}(1-\tilde{p_x})\over n+z_{\alpha \over 2}^2} + {\tilde{p_y}(1-\tilde{p_y})\over k+z_{\alpha \over 2}^2}}.</math>
  
=== Hypothesis Testing the difference of Two Proportions===
+
=== Hypothesis Testing the Difference of Two Proportions===
 
* Null Hypothesis: <math>H_o: p_x=p_y</math>, where <math>p_x</math> and <math>p_x</math> are the sample population proportions of interest.
 
* Null Hypothesis: <math>H_o: p_x=p_y</math>, where <math>p_x</math> and <math>p_x</math> are the sample population proportions of interest.
 
* Alternative Research Hypotheses:
 
* Alternative Research Hypotheses:
Line 68: Line 68:
 
* <math>P_value = P(Z>Z_o)< 1.9\times 10^{-8}</math>. This small p-values provides extremely strong evidence to reject the null hypothesis that there are no differences between the proportions of mothers that had a girl as a second child but had either boy or girl as their first child. Hence there is strong statistical evidence implying that genders of siblings are not independent.
 
* <math>P_value = P(Z>Z_o)< 1.9\times 10^{-8}</math>. This small p-values provides extremely strong evidence to reject the null hypothesis that there are no differences between the proportions of mothers that had a girl as a second child but had either boy or girl as their first child. Hence there is strong statistical evidence implying that genders of siblings are not independent.
  
* '''Practical significance''': The practical significance of the effect (of the gender of the first child on the gender of the second child, in this case) can only be assessed using [[AP_Statistics_Curriculum_2007#Estimating_a_Population_Proportion |confidence intervals]]. A 95% <math>CI (p_1- p_2) =[0.033; 0.070]</math> is computed by <math>p_1-p_2 \pm 1.96 SE(p_1 - p_2)</math>. Clearly, this is a practically negligible effect and no reasonable person would make important prospective family decisions based on the gender of their (first) child.
+
* Practical significance: The practical significance of the effect (of the gender of the first child on the gender of the second child, in this case) can only be assessed using [[AP_Statistics_Curriculum_2007#Estimating_a_Population_Proportion |confidence intervals]]. A 95% <math>CI (p_1- p_2) =[0.033; 0.070]</math> is computed by <math>p_1-p_2 \pm 1.96 SE(p_1 - p_2)</math>. Clearly, this is a practically negligible effect and no reasonable person would make important prospective family decisions based on the gender of their (first) child.
  
 
* This [[SOCR_EduMaterials_AnalysisActivities_Chi_Contingency | SOCR Analysis Activity]] illustrates how to use the [http://socr.ucla.edu/htmls/SOCR_Analyses.html SOCR Analyses] to compute the p-values and answer the hypothesis testing challenge.
 
* This [[SOCR_EduMaterials_AnalysisActivities_Chi_Contingency | SOCR Analysis Activity]] illustrates how to use the [http://socr.ucla.edu/htmls/SOCR_Analyses.html SOCR Analyses] to compute the p-values and answer the hypothesis testing challenge.

Revision as of 18:04, 1 March 2008

General Advance-Placement (AP) Statistics Curriculum - Inferences about Two Proportions

Testing for Equality of Two Proportions

Suppose we have two populations and we are interested in estimating whether the proportions of subjects that have certain characteristic of interest (e.g., fixed gender) in each population are equal. To make this inference we obtain two samples {\(X_1, X_2, X_3, \cdots, X_n\)} and {\(Y_1, Y_2, Y_3, \cdots, Y_k\)}, where each \(X_i\) and \(Y_i\) represents whether the ith observation in the sample had the characteristic of interest. That is \[X_i = \begin{cases}0,& \texttt{Characteristic-absent},\\ 1,& \texttt{Characteristic-present}.\end{cases}\] and \(Y_i = \begin{cases}0,& \texttt{Characteristic-absent},\\ 1,& \texttt{Characteristic-present}.\end{cases}\)

Since the raw sample proportions of observations having the characteristic of interest are \[\hat{p_x}={1 \over n}\sum_{i=1}^n{x_i}\] and \(\hat{p_y}={1 \over k}\sum_{i=1}^k{y_i}\)

The corrected sample proportions (for small samples) are \[\tilde{p_x}={\sum_{i=1}^n{x_i}+0.5z_{\alpha \over 2}^2 \over n+z_{\alpha \over 2}^2},\] and \(\tilde{p_y}={\sum_{i=1}^k{y_i}+0.5z_{\alpha \over 2}^2 \over k+z_{\alpha \over 2}^2},\) where \(z_{\alpha \over 2}\) is the normal critical value we saw earlier.

By the independence of the samples, the standard error of the difference of the two proportion estimates is:

Raw proportions\[SE_{\hat{p_x}-\hat{p_y}} = \sqrt{SE_{\hat{p_x}}^2 + SE_{\hat{p_y}}^2}= \sqrt{ {\hat{p_x}(1-\hat{p_x})\over n} + {\hat{p_y}(1-\hat{p_y})\over k}}.\]
Corrected Proportions\[SE_{\tilde{p_x}-\tilde{p_y}} = \sqrt{SE_{\tilde{p_x}}^2 + SE_{\tilde{p_y}}^2}= \sqrt{ {\tilde{p_x}(1-\tilde{p_x})\over n+z_{\alpha \over 2}^2} + {\tilde{p_y}(1-\tilde{p_y})\over k+z_{\alpha \over 2}^2}}.\]

Hypothesis Testing the Difference of Two Proportions

  • Null Hypothesis\[H_o: p_x=p_y\], where \(p_x\) and \(p_x\) are the sample population proportions of interest.
  • Alternative Research Hypotheses:
    • One sided (uni-directional)\[H_1: p_x > p_y\], or \(H_o: p_x < p_y\)
    • Double sided\[H_1: p_x \not= p_y\]
  • Test Statistics\[Z_o={\tilde{p_x} - \tilde{p_y} \over SE_{\tilde{p_x}-\tilde{p_y}}}\]

Genders of Siblings Example

Is the gender of a second child influenced by the gender of the first child, in families with >1 child? Research hypothesis needs to be formulated first before collecting/looking/interpreting the data that will be used to address it. Mothers whose 1st child is a girl are more likely to have a girl, as a second child, compared to mothers with boys as 1st child. Data: 20 yrs of birth records of 1 Hospital in Auckland, New Zealand.

  Second Child
Male Female Total
First Child Male 3,202 2,776 5,978
Female 2,620 2,792 5,412
Total 5,822 5,568 11,390

Let \(p_1\)=true proportion of girls in mothers with girl as first child, \(p_2\)=true proportion of girls in mothers with boy as first child. The parameter of interest is \(p_1- p_2\).

  • Hypotheses\[H_o: p_1- p_2=0\] (skeptical reaction). \(H_1: p_1- p_2>0\) (research hypothesis).
  Second Child
Number of births Number of girls Proportion
Group 1 (Previous child was girl) \(n_1=5412\) 2792 \(\hat{p}_1=0.516\)
2 (Previous child was boy) \(n_2=5978\) 2776 \(\hat{p}_2=0.464\)
  • Test Statistics\[Z_o = {Estimate-HypothesizedValue\over SE(Estimate)} = {\hat{p}_1 - \hat{p}_2 - 0 \over SE(\hat{p}_1 - \hat{p}_2)} = {\hat{p}_1 - \hat{p}_2 - 0 \over \sqrt{{\hat{p}_1(1-\hat{p}_1)\over n_1} + {\hat{p}_2(1-\hat{p}_2)\over n_2}}} \sim N(0,1)\] and \(Z_o=5.4996\).
  • \(P_value = P(Z>Z_o)< 1.9\times 10^{-8}\). This small p-values provides extremely strong evidence to reject the null hypothesis that there are no differences between the proportions of mothers that had a girl as a second child but had either boy or girl as their first child. Hence there is strong statistical evidence implying that genders of siblings are not independent.
  • Practical significance: The practical significance of the effect (of the gender of the first child on the gender of the second child, in this case) can only be assessed using confidence intervals. A 95% \(CI (p_1- p_2) =[0.033; 0.070]\) is computed by \(p_1-p_2 \pm 1.96 SE(p_1 - p_2)\). Clearly, this is a practically negligible effect and no reasonable person would make important prospective family decisions based on the gender of their (first) child.
SOCR EBook Dinov Hypothesis 020508 Fig6.jpg

References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif