Difference between revisions of "EBook Problems Normal Std"

From SOCR
Jump to: navigation, search
Line 135: Line 135:
 
{{hidden|Answer|(a)}}
 
{{hidden|Answer|(a)}}
 
<hr>
 
<hr>
* [[AP_Statistics_Curriculum_2007_Normal_Std | Back to Ebook]]
+
* [[EBook | Back to Ebook]]
 
* SOCR Home page: http://www.socr.ucla.edu
 
* SOCR Home page: http://www.socr.ucla.edu
  
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=EBook_Problems_Normal_Std}}
+
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php/EBook_Problems_Normal_Std}}

Revision as of 15:48, 2 December 2008

EBook Problems Set - The Standard Normal Distribution

Problem 1

Weight is a measure that tends to be normally distributed. Suppose the mean weight of all women at a large university is 135 pounds, with a standard deviation of 12 pounds. If you were to randomly sample 9 women at the university, there would be a 68% chance that the sample mean weight would be between:

  • Choose one answer.
(a) 131 and 139 pounds.
(b) 133 and 137 pounds.
(c) 119 and 151 pounds
(d) 125 and 145 pounds.
(e) 123 and 147 pounds.


Problem 2

The amount of money college students spend each semester on textbooks is normally distributed with a mean of $195 and a standard deviation of $20. Suppose you take a random sample of 100 college students from this population. There is a 68% chance that the sample mean amount spent on textbooks is between:

  • Choose one answer.
(a) $193 and $197.
(b) $155 and $235.
(c) $191 and $199.
(d) $175 and $215.


Problem 3

A researcher converts 100 lung capacity measurements to z-scores. The lung capacity measurements do not follow a normal distribution. What can we say about the standard deviation of the 100 z-scores?

  • Choose one answer.
(a) It depends on the standard deviation of the raw scores
(b) It equals 1
(c) It equals 100
(d) It must always be less than the standard deviation of the raw scores
(e) It depends on the shape of the raw score distribution


Problem 4

The weights of packets of cookies produced by a certain manufacturer have a normal distribution with a mean of 202 grams and a standard deviation of 3 grams. What is the weight that should be stamped on the packet so that only 0.99% of packets are underweight?

  • Choose one answer.
(a) 200
(b) 195
(c) 190
(d) 205


Problem 5

GSP Inc. is trying two different marketing techniques for its toothpaste. In 20 test cities, it is using family branding. This sells toothpaste with a mean of 2,250 units per week and a standard deviation of 250 units per week. In 20 other test cities, GSP is using individual branding. This sells toothpaste with a mean of 2,250 units per week and a standard deviation of 500 units per week. GSP wants to select the marketing technique that sells at least 2,350 units per week more often. If the number of units sold per week follows a normal distribution, which marketing technique should GSP choose?

  • Choose one answer.
(a) Individual Branding
(b) Can't be answered with the information given
(c) Family Branding
(d) They each get the same result


Problem 6

Among first year students at a certain university, scores on the verbal SAT follow the normal curve. The average is around 500 and the SD is about 100. Tatiana took the SAT, and placed at the 85% percentile. What was her verbal SAT score?

  • Choose one answer.
(a) 604
(b) 560
(c) 90
(d) 403


Problem 7

A set of test scores are normally distributed. The mean is 100 and the standard deviation is 20. These scores are converted to z-scores. What are the z-scores of the mean and median?

  • Choose one answer.
(a) 1
(b) 100
(c) 0
(d) 50


Problem 8

In Japan there is an annual turkey dog eating contest. The number of turkey dogs that contestants eat are normally distributed with a mean of 36 turkey dogs and a standard deviation of 6 turkey dogs. A contestant eats 27 turkey dogs. What is his z-score?

  • Choose one answer.
(a) 6
(b) -1.5
(c) 9
(d) 1.5
(e) -9


Problem 9

Sauron the Dark Lord of Mordor, when not busy trying to take over Middle Earth or searching for his lost Ring of Power, likes to indulge in statistics. One day he decided to estimate the average weight of his orc soldiers, which he knows to be normally distributed.

Sauron took a random sample 100 orc soldiers and found the mean and the standard deviation to be 200lbs and and 20lbs respectively. He can be 68% confident that the mean weight in the population of orc soldiers is between

  • Choose one answer.
(a) 198 to 202 lbs
(b) 194 to 206 lbs
(c) None of the above
(d) 196 to 204 lbs



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif