Difference between revisions of "SOCR EduMaterials AnalysesCommandLineVolumeMultipleRegression"
(→Volume Multiple Linear Regression Usage) |
|||
Line 13: | Line 13: | ||
==Volume Multiple Linear Regression Usage== | ==Volume Multiple Linear Regression Usage== | ||
* Generic Setting: | * Generic Setting: | ||
− | <code> java -cp /ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_core.jar:/ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_plugin.jar edu.ucla.stat.SOCR.analyses.command.VolumeMultipleRegression -dm DesignMatrix.txt -h -regressors [name1,name2,...name_k] -dim Zmax Ymax XMax [-p PValue_Filename] [-r RValue_Filename] -data_type [1,4] -mask /ifs/tmp/myMaskVolume.img</code> | + | <code> java -cp /ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_core.jar:/ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_plugin.jar edu.ucla.stat.SOCR.analyses.command.VolumeMultipleRegression -dm DesignMatrix.txt -h -regressors [name1,name2,...name_k] -dim Zmax Ymax XMax [-p PValue_Filename] [-r RValue_Filename] -data_type [1,2,3,4] -mask /ifs/tmp/myMaskVolume.img</code> |
*Options: | *Options: | ||
Line 24: | Line 24: | ||
** -p [PValue_Filename]: output the p-value volume (enter only the base of the filename) | ** -p [PValue_Filename]: output the p-value volume (enter only the base of the filename) | ||
** -r [RValue_Filename]: output the effect-size/correlation volume (enter only the base of the filename) | ** -r [RValue_Filename]: output the effect-size/correlation volume (enter only the base of the filename) | ||
− | ** -data_type [1,2,4]: Type=1 is for Byte, Type=2 is for Unsigned Short Integer and Type=4 is for 4Byte=Float Volume Input; | + | ** -data_type [1,2,3,4]: Type=1 is for Byte, Type=2 is for Unsigned Short Integer, Type=3 is for Signed Short Integer and Type=4 is for 4Byte=Float Volume Input; |
** Memory Use: Note that for some large file sizes, you may need to request more memory form the JVM. If your data is larger than 200<sup>3</sup> then use these parameters after the initial ''java'' call (-ms2000m -mx4000m), see the example below. This requests 2-4GB or RAM memory for this process. You may need more or less memory depending on the number of volumes and dimension sizes. | ** Memory Use: Note that for some large file sizes, you may need to request more memory form the JVM. If your data is larger than 200<sup>3</sup> then use these parameters after the initial ''java'' call (-ms2000m -mx4000m), see the example below. This requests 2-4GB or RAM memory for this process. You may need more or less memory depending on the number of volumes and dimension sizes. | ||
Revision as of 20:06, 10 February 2009
This page includes the information on how to access the Multiple Linear Regression library for the purpose of computing VOLUME/IMAGE MLR analyses. Access is provided via shell-based command-line interface on local machines. More information about other SOCR Analyses command-line interfaces is available here.
Contents
Introduction
In addition to the graphical user interfaces, via a web-browser, all SOCR Analyses allow command-line shell execution on local systems.
General Usage
- Get the latest SOCR JAR files from the SOCR page (http://socr.ucla.edu/htmls/jars/).
- The command-line interface to SOCR Analyses generally uses EXAMPLE 1 from the list of example data files for the corresponding analysis.
- All Input files are ASCII (see examples within each of the specific analyses).
- a -h flag at the end of the command-line indicates that the first row in all ASCII input data files is a HEADER row (so it's not interpreted as data)
- Number of variables can be indicated at the end (after -h flag). If no number of variables is specified, 3 is set as default.
Volume Multiple Linear Regression Usage
- Generic Setting:
java -cp /ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_core.jar:/ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_plugin.jar edu.ucla.stat.SOCR.analyses.command.VolumeMultipleRegression -dm DesignMatrix.txt -h -regressors [name1,name2,...name_k] -dim Zmax Ymax XMax [-p PValue_Filename] [-r RValue_Filename] -data_type [1,2,3,4] -mask /ifs/tmp/myMaskVolume.img
- Options:
- -help: print usage
- -dm [DesignMatrix.txt]: specify a tab-separated text file containing the design matrix
- -mask [Mask-volume.img]: specify a mask-volume (0 or 1 intensities) restricting the voxels, where the regression models are computed (optional), 1Byte Analyze format volume of the same dimensions as the data
- -h: DesignMatrix contains a header (first row)
- -regressors [name1,name2,...name_k]: specify which columns/variables should be used as regressors/covariates
- -dim Zmax Ymax XMax: specify the dimension-sizes (for 2D images use ZMax=1, for 1D, Zmax=Y_Max=1
- -p [PValue_Filename]: output the p-value volume (enter only the base of the filename)
- -r [RValue_Filename]: output the effect-size/correlation volume (enter only the base of the filename)
- -data_type [1,2,3,4]: Type=1 is for Byte, Type=2 is for Unsigned Short Integer, Type=3 is for Signed Short Integer and Type=4 is for 4Byte=Float Volume Input;
- Memory Use: Note that for some large file sizes, you may need to request more memory form the JVM. If your data is larger than 2003 then use these parameters after the initial java call (-ms2000m -mx4000m), see the example below. This requests 2-4GB or RAM memory for this process. You may need more or less memory depending on the number of volumes and dimension sizes.
- Example: Edit a new file (VolumeMultipleRegression.csh) using any editor and paste this inside (make sure the file has executable permissions). Some operating systems/platforms may require variants of this (C-shell) script.
#!/bin/csh
date
java -ms2000m -mx4000m -cp /ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_core.jar:/ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/bin/SOCR_plugin.jar edu.ucla.stat.SOCR.analyses.command.VolumeMultipleRegression -dm /ifs/ccb/CCB_SW_Tools/others/Statistics/SOCR_Statistics/SOCR_CSV_test_Scripts_Data/DM.txt -h -regressors CDR,MMSE -dim 220 220 220 -p /ifs/tmp/P_Value.img -r /ifs/tmp/R_Value.img -data_type 2
date
exit
Example Input data files
The design-matrix datafile must be provided as tab-separated ASCII/text file (DM.txt). The ASCII content of each of these files should follow the syntax below. Note that the first lines in these files are column headers. This requires the "-h" flag on the command line at execution so that these first lines are interpreted as column headers. The first two columns are the Subject Identifier and filenames for the corresponding imaging volumes, respectively. Columns 3 and on store the corresponding predictor variable (covariate) values. Typically there will be between 1 and 10 covariates.
SUBJECT_ID | FILENAME | SEX | GROUP_ID | AGE | CDR | MMSE |
---|---|---|---|---|---|---|
002_S_0413 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_0413.img | F | Normal | 76.38 | 0 | 29 |
002_S_0559 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_0559.img | M | Normal | 79.37 | 0 | 30 |
002_S_0729 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_0729.img | F | MCI | 65.22 | 0.5 | 27 |
002_S_0954 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_0954.img | F | MCI | 69.42 | 0.5 | 25 |
002_S_1018 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_1018.img | F | AD | 70.75 | 0.5 | 26 |
002_S_1070 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_1070.img | M | MCI | 73.73 | 0.5 | 25 |
002_S_1261 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_1261.img | F | Normal | 71.2 | 0 | 30 |
002_S_1268 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_1268.img | M | MCI | 82.78 | 0.5 | 28 |
002_S_1280 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_002_S_1280.img | F | Normal | 70.8 | 0 | 30 |
005_S_0324 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_005_S_0324.img | F | MCI | 75.35 | 0.5 | 24 |
005_S_0448 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_005_S_0448.img | M | MCI | 85.65 | 0.5 | 26 |
005_S_0553 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_005_S_0553.img | M | Normal | 84.76 | 0 | 30 |
005_S_0572 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_005_S_0572.img | M | MCI | 78.87 | 0.5 | 26 |
005_S_0602 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_005_S_0602.img | M | Normal | 70.87 | 0 | 29 |
005_S_0814 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_005_S_0814.img | F | AD | 71.12 | 0.5 | 21 |
007_S_1206 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_007_S_1206.img | M | Normal | 72.98 | 0 | 29 |
007_S_1222 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_007_S_1222.img | F | Normal | 73.44 | 0 | 30 |
007_S_1304 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_007_S_1304.img | F | AD | 74.76 | 1 | 25 |
012_S_0689 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_012_S_0689.img | M | AD | 63.65 | 0.5 | 22 |
012_S_1009 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_012_S_1009.img | M | Normal | 75.91 | 0 | 28 |
012_S_1212 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_012_S_1212.img | F | Normal | 75.4 | 0 | 27 |
012_S_1292 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_012_S_1292.img | M | MCI | 76.31 | 0.5 | 26 |
012_S_1321 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_012_S_1321.img | M | MCI | 83.24 | 0.5 | 28 |
013_S_0996 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_013_S_0996.img | F | AD | 90.99 | 0.5 | 26 |
013_S_1035 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_013_S_1035.img | M | Normal | 87.33 | 0 | 30 |
013_S_1276 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_013_S_1276.img | F | Normal | 71.94 | 0 | 30 |
016_S_1117 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_016_S_1117.img | F | MCI | 68.98 | 0.5 | 26 |
016_S_1121 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_016_S_1121.img | F | MCI | 56.25 | 0.5 | 24 |
016_S_1138 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_016_S_1138.img | M | MCI | 67.49 | 0.5 | 27 |
016_S_1149 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_016_S_1149.img | M | MCI | 84.44 | 0.5 | 29 |
016_S_1326 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_016_S_1326.img | M | MCI | 66.37 | 0.5 | 28 |
018_S_0335 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_018_S_0335.img | F | AD | 83.66 | 1 | 20 |
018_S_0369 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_018_S_0369.img | M | Normal | 76.11 | 0 | 30 |
018_S_0406 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_018_S_0406.img | M | MCI | 77.87 | 0.5 | 29 |
018_S_0450 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_018_S_0450.img | M | MCI | 68.54 | 0.5 | 30 |
018_S_0633 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_018_S_0633.img | M | AD | 83.37 | 1 | 20 |
020_S_1288 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_020_S_1288.img | M | Normal | 59.98 | 0 | 30 |
021_S_0332 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_021_S_0332.img | M | MCI | 70.03 | 0.5 | 25 |
021_S_0753 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_021_S_0753.img | M | AD | 65.56 | 1 | 24 |
023_S_0030 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0030.img | F | MCI | 80.04 | 0.5 | 29 |
023_S_0031 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0031.img | F | Normal | 77.81 | 0 | 30 |
023_S_0058 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0058.img | M | Normal | 70.2 | 0 | 30 |
023_S_0061 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0061.img | F | Normal | 77.14 | 0 | 29 |
023_S_0078 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0078.img | F | MCI | 76.07 | 0.5 | 24 |
023_S_0139 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0139.img | F | AD | 65.94 | 0.5 | 25 |
023_S_0331 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0331.img | F | MCI | 64.66 | 0.5 | 27 |
023_S_0376 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0376.img | M | MCI | 70.55 | 0.5 | 28 |
023_S_0388 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0388.img | M | MCI | 71.3 | 0.5 | 25 |
023_S_0604 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0604.img | M | MCI | 86.59 | 0.5 | 25 |
023_S_0613 | /ifs/adni/3T/PERMS/IVO/JACOBIANS/3T_bl_023_S_0613.img | F | MCI | 84.09 | 0.5 | 24 |
Translate this page: