Difference between revisions of "AP Statistics Curriculum 2007 Limits Poisson2Bin"

From SOCR
Jump to: navigation, search
(Problems)
 
(2 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
* Note that the conditions of [[AP_Statistics_Curriculum_2007_Distrib_Poisson | Poisson]] approximation to [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial]] are complementary to the [[AP_Statistics_Curriculum_2007_Limits_Norm2Bin | conditions for Normal Approximation of Binomial Distribution]]. Poisson Approximation to Binomial is appropriate when:
 
* Note that the conditions of [[AP_Statistics_Curriculum_2007_Distrib_Poisson | Poisson]] approximation to [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial]] are complementary to the [[AP_Statistics_Curriculum_2007_Limits_Norm2Bin | conditions for Normal Approximation of Binomial Distribution]]. Poisson Approximation to Binomial is appropriate when:
: <math>np < 10</math>
+
: \(np < 10\)
: <math>n \geq 20</math> and <math>p \leq 0.05</math>.  
+
: <math>n \geq 20</math> and <math>p \leq 0.05</math>.
  
 
===Examples===
 
===Examples===
Line 23: Line 23:
  
 
<hr>
 
<hr>
* SOCR Home page: http://www.socr.ucla.edu
+
* SOCR Home page: http://www.socr.umich.edu
  
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=AP_Statistics_Curriculum_2007_Limits_Poisson2Bin}}
+
{{translate|pageName=http://wiki.socr.umich.edu/index.php?title=AP_Statistics_Curriculum_2007_Limits_Poisson2Bin}}

Latest revision as of 08:44, 28 July 2014

General Advance-Placement (AP) Statistics Curriculum - Poisson as Approximation to Binomial Distribution

Poisson as Approximation to Binomial Distribution

The complete details of the Poisson Distribution as a limiting case of the Binomial Distribution are contained here.

\(np < 10\)

\[n \geq 20\] and \(p \leq 0.05\).

Examples

The Binomial distribution can be approximated well by Poisson when \( n \) is large and \( p \) is small with \( np < 10 \), as stated above. This is true because \( \lim_{n \rightarrow \infty} {n \choose x} p^x(1-p)^{n-x}=\frac{\lambda^x e^{-\lambda}}{x!} \), where \( \lambda=np \). Here is an example. Suppose \( 2\% \) of a certain population have Type AB blood. Suppose 60 people from this population are randomly selected. The number of people \( X \) among the 60 that have Type AB blood follows the Binomial distribution with \( n=60, p=0.02 \). The figure below represents the distribution of \( X \). This figure also shows \( P(X=0) \).

SOCR Activities ExploreDistributions Christou figure13.jpg
  • Note: This distribution can be approximated well with Poisson with \( \lambda=np=60(0.02)=1.2 \). The figure below is approximately the same as the figure above (the width of the bars is not important here. The height of each bar represents the probability for each value of \( X \) which is about the same for both distributions).
SOCR Activities ExploreDistributions Christou figure14.jpg

Problems




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif