Difference between revisions of "AP Statistics Curriculum 2007 Beta"

From SOCR
Jump to: navigation, search
(Example)
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Beta Distribution==
 +
 
===Beta Distribution===
 
===Beta Distribution===
 
'''Definition''': Beta distribution is a distribution that models events which are constrained to take place within an interval defined by a minimum and maximum value.  
 
'''Definition''': Beta distribution is a distribution that models events which are constrained to take place within an interval defined by a minimum and maximum value.  
  
<br />'''Probability density function''': For <math>X\sim Beta(\alpha,\beta)\!</math>, the Beta probability density function is given by
+
<br />'''Probability density function''': For <math>X\sim \operatorname{Beta}(\alpha,\beta)\!</math>, the Beta probability density function is given by
  
 
:<math>\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\Beta(\alpha,\beta)}</math>
 
:<math>\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\Beta(\alpha,\beta)}</math>
Line 9: Line 11:
 
*<font size="3"><math>\alpha</math></font> is a positive shape parameter
 
*<font size="3"><math>\alpha</math></font> is a positive shape parameter
 
*<font size="3"><math>\beta</math></font> is a positive shape parameter
 
*<font size="3"><math>\beta</math></font> is a positive shape parameter
*<math>\textstyle\Beta(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt</math> or
+
*<math>\textstyle\Beta(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt</math> or <br /><math>\textstyle\Beta(\alpha,\beta)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}</math>, where <math>\Gamma(k)!=(k-1)!=1 \times 2 \times\ 3 \times\cdots \times (k-1)</math>
:<math>\textstyle\Beta(\alpha,\beta)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}</math>, where <math>\Gamma(k)!=(k-1)!=1 \times 2 \times\ 3 \times\cdots \times (k-1)</math>
 
 
*x is a random variable
 
*x is a random variable
  
Line 37: Line 38:
 
*The time it takes to complete a task
 
*The time it takes to complete a task
 
*The proportion of defective items in a shipment
 
*The proportion of defective items in a shipment
 
  
 
===Example===
 
===Example===
Line 48: Line 48:
 
The figure below shows this result using [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html SOCR distributions]
 
The figure below shows this result using [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html SOCR distributions]
 
<center>[[Image:Beta.jpg|600px]]</center>
 
<center>[[Image:Beta.jpg|600px]]</center>
 +
 +
<hr>
 +
* SOCR Home page: http://www.socr.ucla.edu
 +
 +
"{{translate|pageName=http://wiki.socr.umich.edu/index.php/AP_Statistics_Curriculum_2007_Beta}}

Latest revision as of 05:51, 4 April 2023

General Advance-Placement (AP) Statistics Curriculum - Beta Distribution

Beta Distribution

Definition: Beta distribution is a distribution that models events which are constrained to take place within an interval defined by a minimum and maximum value.


Probability density function: For \(X\sim \operatorname{Beta}(\alpha,\beta)\!\), the Beta probability density function is given by

\[\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\Beta(\alpha,\beta)}\]

where

  • \(\alpha\) is a positive shape parameter
  • \(\beta\) is a positive shape parameter
  • \(\textstyle\Beta(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt\) or
    \(\textstyle\Beta(\alpha,\beta)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\), where \(\Gamma(k)!=(k-1)!=1 \times 2 \times\ 3 \times\cdots \times (k-1)\)
  • x is a random variable


Cumulative density function: Beta cumulative distribution function is given by

\[\frac{\Beta_x(\alpha,\beta)}{\Beta(\alpha,\beta)}\]

where

  • \(\textstyle\Beta_x(\alpha,\beta)=\int_0^x t^{\alpha-1}(1-t)^{\beta-1}dt\)
  • \(\textstyle\Beta(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt\)


Moment generating function: The Beta moment-generating function is

\[M(t)=1+\sum_{k=1}^\infty (\prod_{r=0}^{k-1}\frac{\alpha+r}{\alpha+\beta+r})\frac{t^k}{k!}\]


Expectation: The expected value of a Beta distributed random variable x is

\[E(X)=\frac{\alpha}{\alpha+\beta}\]


Variance: The Beta variance is

\[Var(X)=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\]

Applications

The Beta distribution is used in a range of disciplines including rule of succession, Bayesian statistics, and task duration modeling. Examples of events that may be modeled by Beta distribution include:

  • The time it takes to complete a task
  • The proportion of defective items in a shipment

Example

Suppose that DVDs in a certain shipment are defective with a Beta distribution with \(\alpha=2\) and \(\beta=5\). Compute the probability that the shipment has 20% to 30% defective DVDs.

We can compute this as follows:

\[P(0.2\le X\le 0.3)=\sum_{x=0.2}^{0.3}\frac{x^{2-1}(1-x)^{5-1}}{\Beta(2,5)}=0.235185\]

The figure below shows this result using SOCR distributions

Beta.jpg

"-----


Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif