Difference between revisions of "Statistics for life and health sciences EBook"

From SOCR
Jump to: navigation, search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Welcome to the UCLA Statistics for the Biomedical and Health Sciences (Stats 13) electronic book (EBook).
 
Welcome to the UCLA Statistics for the Biomedical and Health Sciences (Stats 13) electronic book (EBook).
[[Image:Stats13_EBook_Logo.png|150px|thumbnail|right| [[Stats 13 EBook]] ]]
+
[[Image:Stats13_EBook_Logo.png|150px|thumbnail|right| [[Stats13 EBook]] ]]
  
==[[AP_Statistics_Curriculum_2007_Preface| Preface]]==
+
==Preface==
 
This is an Internet-based ''probability and statistics for biomedical and health sciences EBook''. The materials, tools and demonstrations presented in this EBook would are used for the [http://www.registrar.ucla.edu/catalog/catalog12-13-786.htm UCLA Statistics 13 course]. The EBook is developed, updated and manages by the [http://directory.stat.ucla.edu/ UCLA Statistics faculty] teaching this course over the years. Many other instructors, researchers, students and educators have contributed to this EBook.
 
This is an Internet-based ''probability and statistics for biomedical and health sciences EBook''. The materials, tools and demonstrations presented in this EBook would are used for the [http://www.registrar.ucla.edu/catalog/catalog12-13-786.htm UCLA Statistics 13 course]. The EBook is developed, updated and manages by the [http://directory.stat.ucla.edu/ UCLA Statistics faculty] teaching this course over the years. Many other instructors, researchers, students and educators have contributed to this EBook.
  
Line 8: Line 8:
  
 
===Format===
 
===Format===
....
+
Each section in this EBook includes
 +
* Motivation
 +
* Concepts, definitions, formulations
 +
* Examples
 +
* Small (mock-up) and real (research-derived) data
 +
* Webapp demonstration with real data (HTML5)
 +
* R programming
 +
* Problems
  
 
===Pedagogical Use===
 
===Pedagogical Use===
 
...
 
...
  
===Copyrights===
+
===Copyright===
The Probability and Statistics EBook is a freely and openly accessible electronic book for the entire community ...
+
The Probability and Statistics EBook is a freely and openly accessible electronic book for the entire community under [http://creativecommons.org/licenses/by/3.0/us/ CC-BY license] ...
  
==Chapter I:  
+
==Chapter I: Introduction to Statistics ==
 +
* Natural Biomedical and Health Research Studies
 +
* Data-driven Statistics
 +
* Uses and Abuses of Statistics
 +
* Statistical Software Tools
  
 +
==Chapter II: Data and variability==
 +
* Data
 +
* Measures of center, dispersion/variation, skewness, flatness
 +
* Design of experiments
 +
* R data management (Import and Export)
 +
* Histograms, densities and summary statistics
 +
 +
==Chapter III: Randomization-based statistical inference==
 +
* Samples, Populations, Repeated Samples, Resampling
 +
* Bootstrapping
 +
* Testing one, two or more samples
 +
* Confidence intervals
 +
 +
==Chapter IV: Probability Models==
 +
* Fundamentals
 +
* Rules for Computing Probabilities
 +
* Probabilities Simulations
 +
* Counting Principles
 +
 +
==Chapter V: Statistical Parametric Models and Inference==
 +
* Hypothesis testing foundations
 +
* Type I and II errors, Power, sensitivity, specificity
 +
* Parametric Assumptions
 +
 +
===One sample inference===
 +
* T-Test
 +
* Normal Z-test
 +
* Confidence intervals
 +
 +
===Two sample inference===
 +
* Independent samples
 +
* Paired samples
 +
 +
==Chapter VI: Limiting Theorems==
 +
* Law of Large Numbers (First Fundamental Law of Probability Theory)
 +
* Central Limit Theorem (Second Fundamental Law of Probability Theory)
 +
* Relations between Distributions (Distributome)
 +
 +
==Chapter VII: Multivariate Statistics==
 +
* Parametric (simple and multivatiate) regression
 +
* Parametric ANOVA/ANCOVA/MANCOVA
 +
* Logistic Regression
 +
* Parametric assumptions and model validation
 +
* Non-parametric linear modeling
 +
* Randomization and Resampling based multivariate inference
 +
* Genome-wide association studies (GWAS)
 +
 +
==Chapter VIII: Multinomial Experiments and Inference==
 +
* Chi-square
 +
 +
==Chapter IX: Parameter Estimation==
 +
* MOM
 +
* MLE
 +
 +
==Chapter X: Bayesian Inference==
 +
 +
==Chapter XI: Dimensionality Reduction==
 +
* PCA
 +
* ICA
 +
 +
==Chapter XII: Classification Methods==
 +
* Supervised classification methods (Support Vector Machines, SVM, ADABOOST)
 +
* Unsupervised (K-means clustering, hierarchical clustering)
 +
 +
== Chapter XIII: Survival Analysis==
 +
 +
== Chapter XIV: Mixture modeling==
 +
 +
== Chapter XV: Causality==
 +
 +
==Appendix==
  
 
<hr>
 
<hr>
 
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Statistics_for_life_and_health_sciences_EBook}}
 
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Statistics_for_life_and_health_sciences_EBook}}

Latest revision as of 18:57, 18 March 2013

Welcome to the UCLA Statistics for the Biomedical and Health Sciences (Stats 13) electronic book (EBook).

Preface

This is an Internet-based probability and statistics for biomedical and health sciences EBook. The materials, tools and demonstrations presented in this EBook would are used for the UCLA Statistics 13 course. The EBook is developed, updated and manages by the UCLA Statistics faculty teaching this course over the years. Many other instructors, researchers, students and educators have contributed to this EBook.

There are four novel features of this Statistics EBook. It is community-built and allows easy modifications and customizations, completely open-access (in terms of use and contributions), blends information technology, scientific techniques, heterogeneous data and modern pedagogical concepts, and is multilingual.

Format

Each section in this EBook includes

  • Motivation
  • Concepts, definitions, formulations
  • Examples
  • Small (mock-up) and real (research-derived) data
  • Webapp demonstration with real data (HTML5)
  • R programming
  • Problems

Pedagogical Use

...

Copyright

The Probability and Statistics EBook is a freely and openly accessible electronic book for the entire community under CC-BY license ...

Chapter I: Introduction to Statistics

  • Natural Biomedical and Health Research Studies
  • Data-driven Statistics
  • Uses and Abuses of Statistics
  • Statistical Software Tools

Chapter II: Data and variability

  • Data
  • Measures of center, dispersion/variation, skewness, flatness
  • Design of experiments
  • R data management (Import and Export)
  • Histograms, densities and summary statistics

Chapter III: Randomization-based statistical inference

  • Samples, Populations, Repeated Samples, Resampling
  • Bootstrapping
  • Testing one, two or more samples
  • Confidence intervals

Chapter IV: Probability Models

  • Fundamentals
  • Rules for Computing Probabilities
  • Probabilities Simulations
  • Counting Principles

Chapter V: Statistical Parametric Models and Inference

  • Hypothesis testing foundations
  • Type I and II errors, Power, sensitivity, specificity
  • Parametric Assumptions

One sample inference

  • T-Test
  • Normal Z-test
  • Confidence intervals

Two sample inference

  • Independent samples
  • Paired samples

Chapter VI: Limiting Theorems

  • Law of Large Numbers (First Fundamental Law of Probability Theory)
  • Central Limit Theorem (Second Fundamental Law of Probability Theory)
  • Relations between Distributions (Distributome)

Chapter VII: Multivariate Statistics

  • Parametric (simple and multivatiate) regression
  • Parametric ANOVA/ANCOVA/MANCOVA
  • Logistic Regression
  • Parametric assumptions and model validation
  • Non-parametric linear modeling
  • Randomization and Resampling based multivariate inference
  • Genome-wide association studies (GWAS)

Chapter VIII: Multinomial Experiments and Inference

  • Chi-square

Chapter IX: Parameter Estimation

  • MOM
  • MLE

Chapter X: Bayesian Inference

Chapter XI: Dimensionality Reduction

  • PCA
  • ICA

Chapter XII: Classification Methods

  • Supervised classification methods (Support Vector Machines, SVM, ADABOOST)
  • Unsupervised (K-means clustering, hierarchical clustering)

Chapter XIII: Survival Analysis

Chapter XIV: Mixture modeling

Chapter XV: Causality

Appendix




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif