Difference between revisions of "SMHS LinearModeling StatsSoftware"
(→SMHS Linear Modeling - Statistical Software) |
(→SMHS Linear Modeling - Statistical Software) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
{| class="wikitable" style="text-align:left; width:99%" border="1" | {| class="wikitable" style="text-align:left; width:99%" border="1" | ||
|- | |- | ||
− | + | !Statistical Software||Advantages||Disadvantages | |
|- | |- | ||
− | + | | [http://r-project.org R]|| | |
* R is actively maintained (100,000 developers, 15K packages) | * R is actively maintained (100,000 developers, 15K packages) | ||
* Excellent connectivity to various types of data and other systems | * Excellent connectivity to various types of data and other systems | ||
Line 26: | Line 26: | ||
* Steeper learning curve | * Steeper learning curve | ||
|- | |- | ||
− | + | | [http://www.sas.com SAS] || | |
* Large datasets | * Large datasets | ||
* Commonly used in business & Government | * Commonly used in business & Government | ||
Line 34: | Line 34: | ||
* Expensive/proprietary | * Expensive/proprietary | ||
|- | |- | ||
− | + | | [http://www.stata.com Stata] || | |
+ | * Easy statistical analyses | ||
+ | || | ||
+ | * Mostly classical stats | ||
|- | |- | ||
− | + | | [http://www.ibm.com/analytics/us/en/technology/spss SPSS] || | |
* Appropriate for beginners | * Appropriate for beginners | ||
* Simple interfaces | * Simple interfaces |
Latest revision as of 12:19, 21 May 2016
SMHS Linear Modeling - Statistical Software
This section briefly describes the pros and cons of different statistical software platforms.
Statistical Software | Advantages | Disadvantages |
---|---|---|
R |
|
|
SAS |
|
|
Stata |
|
|
SPSS |
|
|
More comparisons are available online: UCLA/ATS and Wikipedia. |
GoogleScholar Research Article Pubs
Year | R | SAS | SPSS |
---|---|---|---|
1995 | 8 | 8620 | 6450 |
1996 | 2 | 8670 | 7600 |
1997 | 6 | 10100 | 9930 |
1998 | 13 | 10900 | 14300 |
1999 | 26 | 12500 | 24300 |
2000 | 51 | 16800 | 42300 |
2001 | 133 | 22700 | 68400 |
2002 | 286 | 28100 | 88400 |
2003 | 627 | 40300 | 78600 |
2004 | 1180 | 51400 | 137000 |
2005 | 2180 | 58500 | 147000 |
2006 | 3430 | 64400 | 142000 |
2007 | 5060 | 62700 | 131000 |
2008 | 6960 | 59800 | 116000 |
2009 | 9220 | 52800 | 61400 |
2010 | 11300 | 43000 | 44500 |
2011 | 14600 | 32100 | 32000 |
require(ggplot2) require(reshape) Data_R_SAS_SPSS_Pubs <-read.csv('https://umich.instructure.com/files/522067/download?download_frd=1', header=T) df <- data.frame(Data_R_SAS_SPSS_Pubs) # convert to long format df <- melt(df , id.vars = 'Year', variable.name = 'Time') ggplot(data=df, aes(x=Year, y=value, colour=variable, group = variable)) + geom_line() + geom_line(size=4) + labs(x='Year', y='Citations')
Next see
Quality Control section for a discussion of data Quality Control (QC) and Quality Assurance (QA) which represent important components of data-driven modeling, analytics and visualization.
- SOCR Home page: http://www.socr.umich.edu
Translate this page: