Difference between revisions of "UQuadraticDistribuionAbout"

From SOCR
Jump to: navigation, search
m
 
(4 intermediate revisions by 2 users not shown)
Line 10: Line 10:
 
<center>(vertical scale) <math>\alpha = {12 \over \left ( b-a \right )^3}</math>.
 
<center>(vertical scale) <math>\alpha = {12 \over \left ( b-a \right )^3}</math>.
 
</center>
 
</center>
 
+
More information about U-quadratic, and other continuous distribution functions, is available at [http://en.wikipedia.org/wiki/UQuadratic_distribution Wikipedia].
  
 
===Properties===
 
===Properties===
 
* Support Parameters: <math>a < b \in (-\infty,\infty)</math>
 
* Support Parameters: <math>a < b \in (-\infty,\infty)</math>
* Range/Offset Parameters: <math>\alpha \in (0,\infty)</math> and <math>\beta \in (-\infty,\infty)</math>  
+
* Scale/Offset Parameters: <math>\alpha \in (0,\infty)</math> and <math>\beta \in (-\infty,\infty)</math>  
 
* PDF: <math>f(x)=\alpha \left ( x - \beta \right )^2, \forall x \in [a , b]</math>
 
* PDF: <math>f(x)=\alpha \left ( x - \beta \right )^2, \forall x \in [a , b]</math>
 
* CDF  <math>F(x)={\alpha \over 3} \left ( (x - \beta)^3 + (\beta - a)^3 \right ), \forall x \in [a , b]</math>
 
* CDF  <math>F(x)={\alpha \over 3} \left ( (x - \beta)^3 + (\beta - a)^3 \right ), \forall x \in [a , b]</math>
Line 23: Line 23:
 
* Skewness: 0 (distribution is symmetric around the mean)
 
* Skewness: 0 (distribution is symmetric around the mean)
 
* Kurtosis: <math> {3 \over 112} (b-a)^4 </math>
 
* Kurtosis: <math> {3 \over 112} (b-a)^4 </math>
 +
* Moment Generating Function: <math>M_x(t)= {-3\left(e^{at}(4+(a^2+2a(-2+b)+b^2)t)- e^{bt} (4 + (-4b + (a+b)^2)t)\right) \over (a-b)^3 t^2 }</math>
 +
* Characteristic Function: <math>{3i\left(e^{iat}(-4i+(a^2+2a(-2+b)+b^2)t)+ e^{ibt} (4i - (-4b + (a+b)^2)t)\right) \over (a-b)^3 t^2 }</math>
  
 
===Interactive U Quadratic Distribution===
 
===Interactive U Quadratic Distribution===
You can see the interactive ''U Quadratic'' distribution by going to [http://socr.ucla.edu/htmls/SOCR_Distributions.html SOCR Distributions] and selecting from the drop down list of distributions ''U Quadratic''. Then follow the '''Help''' instructions to dynamically set parameters, compute critical and probability values using the mouse and keyboard.
+
You can see the interactive ''U Quadratic'' distribution by going to [http://socr.ucla.edu/htmls/dist/UQuadratic_Distribution.html SOCR Distributions] and selecting from the drop down list of distributions ''U Quadratic''. Then follow the '''Help''' instructions to dynamically set parameters, compute critical and probability values using the mouse and keyboard.
  
 
<center>[[Image:SOCR_Distributions_UQuadraticAbout_Dinov_Fig2.jpg|500px]]</center>
 
<center>[[Image:SOCR_Distributions_UQuadraticAbout_Dinov_Fig2.jpg|500px]]</center>
Line 31: Line 33:
 
<hr>
 
<hr>
 
* SOCR Home page: http://www.socr.ucla.edu
 
* SOCR Home page: http://www.socr.ucla.edu
 +
* [http://en.wikipedia.org/wiki/U-quadratic_distribution U-quadratic distribution at Wikipedia]
  
 
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=UQuadraticDistribuionAbout}}
 
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=UQuadraticDistribuionAbout}}

Latest revision as of 14:15, 28 December 2009

About_pages_for_SOCR_Distributions - U-Quadratic Distribution

Description

SOCR Distributions UQuadraticAbout Dinov Fig1.jpg

The U quadratic distribution is defined by the following density function

\( f(x)=\alpha \left ( x - \beta \right )^2, \forall x \in [a , b], a < b\),

where the relation between the two pairs of parameters (domain-support, a and b) and (range/offset \(\alpha\) and \(\beta\)) are given by the following two equations

(gravitational balance center) \(\beta = {b+a \over 2}\), and
(vertical scale) \(\alpha = {12 \over \left ( b-a \right )^3}\).

More information about U-quadratic, and other continuous distribution functions, is available at Wikipedia.

Properties

  • Support Parameters\[a < b \in (-\infty,\infty)\]
  • Scale/Offset Parameters\[\alpha \in (0,\infty)\] and \(\beta \in (-\infty,\infty)\)
  • PDF\[f(x)=\alpha \left ( x - \beta \right )^2, \forall x \in [a , b]\]
  • CDF \(F(x)={\alpha \over 3} \left ( (x - \beta)^3 + (\beta - a)^3 \right ), \forall x \in [a , b]\)
  • Mean\[{a+b \over 2}\]
  • Median\[{a+b \over 2}\]
  • Modes\[a \] and \( b \)
  • Variance\[ {3 \over 20} (b-a)^2 \]
  • Skewness: 0 (distribution is symmetric around the mean)
  • Kurtosis\[ {3 \over 112} (b-a)^4 \]
  • Moment Generating Function\[M_x(t)= {-3\left(e^{at}(4+(a^2+2a(-2+b)+b^2)t)- e^{bt} (4 + (-4b + (a+b)^2)t)\right) \over (a-b)^3 t^2 }\]
  • Characteristic Function\[{3i\left(e^{iat}(-4i+(a^2+2a(-2+b)+b^2)t)+ e^{ibt} (4i - (-4b + (a+b)^2)t)\right) \over (a-b)^3 t^2 }\]

Interactive U Quadratic Distribution

You can see the interactive U Quadratic distribution by going to SOCR Distributions and selecting from the drop down list of distributions U Quadratic. Then follow the Help instructions to dynamically set parameters, compute critical and probability values using the mouse and keyboard.

SOCR Distributions UQuadraticAbout Dinov Fig2.jpg



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif