Difference between revisions of "SOCR Events May2008 C9 S1"

From SOCR
Jump to: navigation, search
(Compute predictions of y-values for given x-values using a regression equation, and recognize the limitations of such predictions)
 
(5 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
* Copy the first 200 measurements of the [[SOCR_Data_Dinov_020108_HeightsWeights | Human Height and Weight Dataset]] into the [http://socr.ucla.edu/htmls/SOCR_Analyses.html SOCR Analysis (Simple Linear Regression)].
 
* Copy the first 200 measurements of the [[SOCR_Data_Dinov_020108_HeightsWeights | Human Height and Weight Dataset]] into the [http://socr.ucla.edu/htmls/SOCR_Analyses.html SOCR Analysis (Simple Linear Regression)].
  
<center>[[Image:SOCR_Events_May2008_C7_S1_Dinov_020808_Fig2.jpg|500px]]
+
<center>[[Image:SOCR_Events_May2008_C9_S1_Dinov_020808_Fig7.jpg|500px]]</center>
[[Image:SOCR_Events_May2008_C9_S1_Dinov_020808_Fig2.jpg|500px]]</center>
 
  
* Map the Heights and Weights columns to the X and Y variables.
+
* Paste these in SOCR and Map the Heights and Weights columns to the X and Y variables.
  
<center>[[Image:SOCR_Events_May2008_C9_S1_Dinov_020808_Fig3.jpg|500px]]</center>
+
<center>[[Image:SOCR_Events_May2008_C9_S1_Dinov_020808_Fig2.jpg|500px]]
 +
[[Image:SOCR_Events_May2008_C9_S1_Dinov_020808_Fig3.jpg|500px]]</center>
  
 
* Click CALCULATE and see the output numerical results (in the Results tab) and the graphical outputs (in the Graphs tab).
 
* Click CALCULATE and see the output numerical results (in the Results tab) and the graphical outputs (in the Graphs tab).
Line 19: Line 19:
 
===Compute predictions of y-values for given x-values using a regression equation, and recognize the limitations of such predictions===
 
===Compute predictions of y-values for given x-values using a regression equation, and recognize the limitations of such predictions===
  
The regression line we computed and illustreted on the [http://wiki.stat.ucla.edu/socr/uploads/d/d1/SOCR_Events_May2008_C9_S1_Dinov_020808_Fig4.jpg  image above] shows the following linear relation between Heights (inches) and Weights (pounds):
+
The regression line we computed and illustrated on the [http://wiki.stat.ucla.edu/socr/uploads/d/d1/SOCR_Events_May2008_C9_S1_Dinov_020808_Fig4.jpg  image above] shows the following linear relation between Heights (inches) and Weights (pounds):
 
<center> <math>Height = 56.457 + 0.09033384003691448\times Weight</math></center>
 
<center> <math>Height = 56.457 + 0.09033384003691448\times Weight</math></center>
 +
 +
 +
What would be the regression of the Weight on Height (the reverse regression)? You can compute this by hand to be <center> <math>Weight = -105.959 + 3.431662594473845\times Height.</math></center>
 +
 +
Or you can simply re-maps (swap) the dependent and independent variables in [http://socr.ucla.edu/htmls/SOCR_Analyses.html SOCR Analysis (Simple Linear Regression)] and recalculate the linear relation.
 +
 +
<center>[[Image:SOCR_Events_May2008_C9_S1_Dinov_020808_Fig6.jpg|500px]]</center>
  
 
===Compute and use the standard error for regression===
 
===Compute and use the standard error for regression===

Latest revision as of 20:30, 8 February 2008

SOCR May 2008 Event - Analyze bivariate data using linear regression methods

Fit regression lines to pairs of numeric variables and calculate the means and standard deviations of the two variables and the correlation coefficient, using technology

SOCR Events May2008 C9 S1 Dinov 020808 Fig7.jpg
  • Paste these in SOCR and Map the Heights and Weights columns to the X and Y variables.
SOCR Events May2008 C9 S1 Dinov 020808 Fig2.jpg SOCR Events May2008 C9 S1 Dinov 020808 Fig3.jpg
  • Click CALCULATE and see the output numerical results (in the Results tab) and the graphical outputs (in the Graphs tab).
SOCR Events May2008 C9 S1 Dinov 020808 Fig4.jpg SOCR Events May2008 C9 S1 Dinov 020808 Fig5.jpg

Compute predictions of y-values for given x-values using a regression equation, and recognize the limitations of such predictions

The regression line we computed and illustrated on the image above shows the following linear relation between Heights (inches) and Weights (pounds):

\(Height = 56.457 + 0.09033384003691448\times Weight\)


What would be the regression of the Weight on Height (the reverse regression)? You can compute this by hand to be

\(Weight = -105.959 + 3.431662594473845\times Height.\)

Or you can simply re-maps (swap) the dependent and independent variables in SOCR Analysis (Simple Linear Regression) and recalculate the linear relation.

SOCR Events May2008 C9 S1 Dinov 020808 Fig6.jpg

Compute and use the standard error for regression

References



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif