Difference between revisions of "AP Statistics Curriculum 2007 Johnson SB"
(→Johnson SB Distribution) |
|||
Line 2: | Line 2: | ||
===Johnson SB Distribution=== | ===Johnson SB Distribution=== | ||
− | The Johnson SB distribution is related to the [http:// | + | The Johnson SB distribution is related to the [http://wiki.stat.ucla.edu/socr/index.php/AP_Statistics_Curriculum_2007_Normal_Std normal distribution]. Four parameters are needed: <math>\Gamma</math>, <math>\delta</math>, <math>\lambda</math>, <math>\epsilon</math> . It is a continuous distribution defined on bounded range <math> \epsilon \leq x \leq \epsilon + \lambda </math>, and the distribution can be symmetric or asymmetric. |
'''PDF''': <br> | '''PDF''': <br> |
Revision as of 17:50, 18 July 2011
Contents
General Advance-Placement (AP) Statistics Curriculum - Johnson SB Distribution
Johnson SB Distribution
The Johnson SB distribution is related to the normal distribution. Four parameters are needed\[\Gamma\], \(\delta\), \(\lambda\), \(\epsilon\) . It is a continuous distribution defined on bounded range \( \epsilon \leq x \leq \epsilon + \lambda \), and the distribution can be symmetric or asymmetric.
PDF:
\( f(x) = \tfrac{\delta}{\lambda\sqrt{2\pi} z(1-z)} exp(-\tfrac{1}{2}(\gamma + \delta ln(\tfrac{z}{1-z}))^2)\), where \(z \equiv \tfrac{x-\zeta}{\lambda}\)
CDF:
\( F(x) = \Phi(\gamma + \delta ln \tfrac{z}{1-z})\), where \( z = \tfrac{x-\epsilon}{\lambda}\)
Moments:
Moments for this distribution do not have a simple expression.
Applications
\(\cdot\) Epidemiology: http://www.bvsde.paho.org/bvsacd/cd47/data.pdf
\(\cdot\) Forrestry: http://cms1.gre.ac.uk/conferences/iufro/FMA/SB_Plot_Minimum1.pdf
SOCR Links
http://www.distributome.org/ -> SOCR -> Distributions -> Johnson Special Bounded (SB) Distribution
http://www.distributome.org/ -> SOCR -> Functors -> Johnson Special Bounded (SB) Distribution
SOCR Docs: http://www.socr.ucla.edu/docs/edu/ucla/stat/SOCR/distributions/JohnsonSBDistribution.html
SOCR Calculator: http://socr.ucla.edu/htmls/dist/JohnsonSBDistribution.html
See Also
http://www.mathwave.com/articles/johnson_sb_distribution.html
- SOCR Home page: http://www.socr.ucla.edu
Translate this page: