Difference between revisions of "SOCR EduMaterials Activities Exponential Distribution"

From SOCR
Jump to: navigation, search
(This is an activity to explore the Exponential Distribution: Learn how to compute probabilities, densities, and percentiles.)
(This is an activity to explore the Exponential Distribution: Learn how to compute probabilities, densities, and percentiles.)
Line 21: Line 21:
  
 
* '''Exercise 4:''' Find one percentile for each of these distributions and record them on the printouts.  Verify these  percentiles using the formula we discussed in class:
 
* '''Exercise 4:''' Find one percentile for each of these distributions and record them on the printouts.  Verify these  percentiles using the formula we discussed in class:
\[
+
 
 +
 
 +
<math>
 
x_p=\frac{ln(1-\frac{p}{100})}{-\lambda}
 
x_p=\frac{ln(1-\frac{p}{100})}{-\lambda}
\]
+
</math>
  
 
* '''Exercise 5:''' Compute one cumulative probability for each one of these distributions, show it on the graph, and verify it with the formula:
 
* '''Exercise 5:''' Compute one cumulative probability for each one of these distributions, show it on the graph, and verify it with the formula:
\[
+
<math>
 
P(X \le x)=1-e^{-\lambda x}
 
P(X \le x)=1-e^{-\lambda x}
\]
+
</math>
  
  

Revision as of 19:20, 25 September 2006

This is an activity to explore the Exponential Distribution: Learn how to compute probabilities, densities, and percentiles.

  • Here is the shape of the exponential distribution (this is a snpashot from the SOCR website:
SOCR Activities ExponentialDistribution Christou 092206 Fig1.jpg


  • Exercise 1: Graph and print:

a. exp(0.2)

b. exp(1)

c. exp(10)

  • Exercise 2: Locate the maximum density for each one of these distributions.
  • Exercise 3: Find the height of the density at 3 values of X (one near 0, one near the mean, and one towards the tail of the distribution).
  • Exercise 4: Find one percentile for each of these distributions and record them on the printouts. Verify these percentiles using the formula we discussed in class\[ x_p=\frac{ln(1-\frac{p}{100})}{-\lambda} \]
  • Exercise 5: Compute one cumulative probability for each one of these distributions, show it on the graph, and verify it with the formula\[ P(X \le x)=1-e^{-\lambda x} \]





Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif