Difference between revisions of "AP Statistics Curriculum 2007 Hypothesis L Mean"

From SOCR
Jump to: navigation, search
 
Line 1: Line 1:
 
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Testing a Claim about a Mean: Large Samples==
 
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Testing a Claim about a Mean: Large Samples==
  
=== Testing a Claim about a Mean: Large Samples===
+
We already saw [[AP_Statistics_Curriculum_2007_Estim_L_Mean | how to construct point and interval estimates for the population mean in the large sample case]]. Now, we show how to do hypothesis tests about the mean in as the sample-sizes are large.  
Example on how to attach images to Wiki documents in included below (this needs to be replaced by an appropriate figure for this section)!
 
<center>[[Image:AP_Statistics_Curriculum_2007_IntroVar_Dinov_061407_Fig1.png|500px]]</center>
 
  
===Approach===
+
===[[AP_Statistics_Curriculum_2007_Estim_L_Mean |  Background]]===
Models & strategies for solving the problem, data understanding & inference.  
+
* Recall that the population mean may be estimated by the sample average, <math>\overline{X_n}={1\over n}\sum_{i=1}^n{X_i}</math>, of random sample {<math>X_1, X_2, X_3, \cdots , X_n</math>} of the procees.
  
* TBD
+
* For a given small <math>\alpha</math> (e.g., 0.1, 0.05, 0.025, 0.01, 0.001, etc.), the <math>(1-\alpha)100%</math> Confidence interval for the mean is constructed by
 +
: <math>CI(\alpha): \overline{x} \pm z_{\alpha\over 2} E,</math>
 +
: where the '''margin of error''' E is defined as
 +
: <math>E = \begin{cases}{\sigma\over\sqrt{n}},& \texttt{for-known}-\sigma,\\
 +
{{1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}},& \texttt{for-unknown}-\sigma.\end{cases}</math>
 +
: and <math>z_{\alpha\over 2}</math> is the [[AP_Statistics_Curriculum_2007_Normal_Critical | critical value]] for a [[AP_Statistics_Curriculum_2007_Normal_Std |Standard Normal]] distribution at <math>{\alpha\over 2}</math>.
  
===Model Validation===
+
=== Hypothesis Testing about a Mean: Large Samples===
Checking/affirming underlying assumptions.  
+
* Null Hypothesis: <math>H_o: \mu=\mu_o</math> (e.g., 0)
 +
* Alternative Research Hypotheses:
 +
** One sided (uni-directional): <math>H_1: \mu >\mu_o</math>, or <math>H_o: \mu<\mu_o</math>
 +
** Double sided: <math>H_1: \mu \not= \mu_o</math>
  
* TBD
+
====Known Variance====
 +
* [http://en.wikipedia.org/wiki/Hypothesis_testing#Common_test_statistics Test statistics]:
 +
: <math>Z_o = {\overline{x} - \mu_o \over \sigma} \sim N(0,1)</math>.
  
===Computational Resources: Internet-based SOCR Tools===
+
====Unknown Variance====
* TBD
+
* [http://en.wikipedia.org/wiki/Hypothesis_testing#Common_test_statistics Test statistics]:
 +
: <math>T_o = {\overline{x} - \mu_o \over SE(\overline{x})} = {\overline{x} - \mu_o \over {{1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}})} \sim N(0,1)</math>.
  
===Examples===
+
===Example===
Computer simulations and real observed data.  
+
Let's [[AP_Statistics_Curriculum_2007_Estim_L_Mean | revisit the ''number of sentences per advertisement'' example]], where we measure of readability for magazine advertisements.  A random sample of the number of sentences found in 30 magazine advertisements is listed below.  Suppose we want to test a null hypothesis: <math>H_o: \mu=20</math> against a double-sided research alternative hypothesis: <math>H_1: \mu \not= 20</math>.
 +
<center>
 +
{| class="wikitable" style="text-align:center; width:75%" border="1"
 +
|-
 +
| 16 || 9 ||  14 ||  11||  17 ||  12|| 99 || 18 || 13|| 12 ||  5 ||9  ||17 || 6  || 11 || 17 || 18 ||20 || 6 ||14|| 7  ||11|| 12 ||  5 || 18 || 6 || 4 || 13 || 11 ||  12
 +
|}
 +
</center>
 +
 
 +
We had the [[AP_Statistics_Curriculum_2007_Estim_L_Mean | following 2 sample statistics computed earlier]]
 +
: <math>\overline{x}=\hat{\mu}=14.77</math>
 +
: <math>s=\hat{\sigma}=16.54</math>
 +
 
 +
As the population variance is not given, we have to use the [[AP_Statistics_Curriculum_2007_StudentsT |T-statistics]]
 +
: <math>T_o = {\overline{x} - \mu_o \over SE(\overline{x})} = {14.77 - 20 \over {{1\over \sqrt{30}} \sqrt{\sum_{i=1}^{30}{(x_i-14.77)^2\over 29}}})} \sim T(df=29)</math>.
  
* TBD
 
 
 
===Hands-on activities===
 
===Hands-on activities===
Step-by-step practice problems.  
+
*See the [[SOCR_EduMaterials_Activities_CoinfidenceIntervalExperiment | SOCR Confidence Interval Experiment]].
 +
* Sample statistics, like the sample-mean and the sample-variance, may be easily obtained using [http://socr.ucla.edu/htmls/SOCR_Charts.html SOCR Charts]. The images below illustrate this functionality (based on the '''Bar-Chart''' and '''Index-Chart''') using the 30 observations of the number of sentences per advertisement, [[AP_Statistics_Curriculum_2007_Estim_L_Mean#Example | reported above]].
 +
<center>[[Image:SOCR_EBook_Dinov_Estimates_L_Mean_020208_Fig1.jpg|400px]]
 +
[[Image:SOCR_EBook_Dinov_Estimates_L_Mean_020208_Fig2.jpg|400px]]</center>
  
* TBD
+
<hr>
  
<hr>
 
 
===References===
 
===References===
* TBD
 
  
 
<hr>
 
<hr>

Revision as of 14:01, 6 February 2008

General Advance-Placement (AP) Statistics Curriculum - Testing a Claim about a Mean: Large Samples

We already saw how to construct point and interval estimates for the population mean in the large sample case. Now, we show how to do hypothesis tests about the mean in as the sample-sizes are large.

Background

  • Recall that the population mean may be estimated by the sample average, \(\overline{X_n}={1\over n}\sum_{i=1}^n{X_i}\), of random sample {\(X_1, X_2, X_3, \cdots , X_n\)} of the procees.
  • For a given small \(\alpha\) (e.g., 0.1, 0.05, 0.025, 0.01, 0.001, etc.), the \((1-\alpha)100%\) Confidence interval for the mean is constructed by

\[CI(\alpha): \overline{x} \pm z_{\alpha\over 2} E,\]

where the margin of error E is defined as

\[E = \begin{cases}{\sigma\over\sqrt{n}},& \texttt{for-known}-\sigma,\\ {{1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}},& \texttt{for-unknown}-\sigma.\end{cases}\]

and \(z_{\alpha\over 2}\) is the critical value for a Standard Normal distribution at \({\alpha\over 2}\).

Hypothesis Testing about a Mean: Large Samples

  • Null Hypothesis\[H_o: \mu=\mu_o\] (e.g., 0)
  • Alternative Research Hypotheses:
    • One sided (uni-directional)\[H_1: \mu >\mu_o\], or \(H_o: \mu<\mu_o\)
    • Double sided\[H_1: \mu \not= \mu_o\]

Known Variance

\[Z_o = {\overline{x} - \mu_o \over \sigma} \sim N(0,1)\].

Unknown Variance

\[T_o = {\overline{x} - \mu_o \over SE(\overline{x})} = {\overline{x} - \mu_o \over {{1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}})} \sim N(0,1)\].

Example

Let's revisit the number of sentences per advertisement example, where we measure of readability for magazine advertisements. A random sample of the number of sentences found in 30 magazine advertisements is listed below. Suppose we want to test a null hypothesis\[H_o: \mu=20\] against a double-sided research alternative hypothesis\[H_1: \mu \not= 20\].

16 9 14 11 17 12 99 18 13 12 5 9 17 6 11 17 18 20 6 14 7 11 12 5 18 6 4 13 11 12

We had the following 2 sample statistics computed earlier \[\overline{x}=\hat{\mu}=14.77\] \[s=\hat{\sigma}=16.54\]

As the population variance is not given, we have to use the T-statistics \[T_o = {\overline{x} - \mu_o \over SE(\overline{x})} = {14.77 - 20 \over {{1\over \sqrt{30}} \sqrt{\sum_{i=1}^{30}{(x_i-14.77)^2\over 29}}})} \sim T(df=29)\].

Hands-on activities

  • See the SOCR Confidence Interval Experiment.
  • Sample statistics, like the sample-mean and the sample-variance, may be easily obtained using SOCR Charts. The images below illustrate this functionality (based on the Bar-Chart and Index-Chart) using the 30 observations of the number of sentences per advertisement, reported above.
SOCR EBook Dinov Estimates L Mean 020208 Fig1.jpg SOCR EBook Dinov Estimates L Mean 020208 Fig2.jpg

References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif