Difference between revisions of "AP Statistics Curriculum 2007 Prob Rules"

From SOCR
Jump to: navigation, search
Line 5: Line 5:
 
[[Image:500px-Inclusion-exclusion.svg.png|150px|thumbnail|right| [http://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Inclusion-exclusion.svg/180px-Inclusion-exclusion.svg.png Venn Diagrams]]]
 
[[Image:500px-Inclusion-exclusion.svg.png|150px|thumbnail|right| [http://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Inclusion-exclusion.svg/180px-Inclusion-exclusion.svg.png Venn Diagrams]]]
  
 +
For events ''A''<sub>1</sub>, ..., ''A''<sub>''n''</sub> in a probability space (S,P), the probability of the union for ''n=2'' is
  
 +
:<math>\mathbb{P}(A_1\cup A_2)=\mathbb{P}(A_1)+\mathbb{P}(A_2)-\mathbb{P}(A_1\cap A_2),</math>
 +
 +
For ''n=3'',
 +
 +
:<math>\begin{align}\mathbb{P}(A_1\cup A_2\cup A_3)&=\mathbb{P}(A_1)+\mathbb{P}(A_2)+\mathbb{P}(A_3)\\
 +
&\qquad-\mathbb{P}(A_1\cap A_2)-\mathbb{P}(A_1\cap A_3)-\mathbb{P}(A_2\cap A_3)+\mathbb{P}(A_1\cap A_2\cap A_3)
 +
\end{align}</math>
 +
 +
In general, for any ''n'',
 +
 +
:<math>\begin{align}
 +
\mathbb{P}\biggl(\bigcup_{i=1}^n A_i\biggr) & {} =\sum_{i=1}^n \mathbb{P}(A_i)
 +
-\sum_{i,j\,:\,i<j}\mathbb{P}(A_i\cap A_j) \\
 +
&\qquad+\sum_{i,j,k\,:\,i<j<k}\mathbb{P}(A_i\cap A_j\cap A_k)-\ \cdots\cdots\ \pm \mathbb{P}\biggl(\bigcap_{i=1}^n A_i\biggr),
 +
\end{align}</math>
 +
 +
This can also be written in closed form as
 +
 +
:<math>\mathbb{P}\biggl(\bigcup_{i=1}^n A_i\biggr)  =\sum_{k=1}^n (-1)^{k-1}\sum_{\scriptstyle I\subset\{1,\ldots,n\}\atop\scriptstyle|I|=k} \mathbb{P}\biggl(\bigcap_{i\in I} A_i\biggr),</math>
 +
 +
where the last sum runs over all subsets ''I'' of the indices 1, ..., ''n'' which contain exactly ''k'' elements.
  
 
=== Multiplication Rule===
 
=== Multiplication Rule===

Revision as of 22:56, 28 January 2008

General Advance-Placement (AP) Statistics Curriculum - Probability Theory Rules

Addition Rule

The probability of a union, also called the Inclusion-Exclusion principle allows us to compute probabilities of composite events represented as unions (i.e., sums) of simpler events.

For events A1, ..., An in a probability space (S,P), the probability of the union for n=2 is

\[\mathbb{P}(A_1\cup A_2)=\mathbb{P}(A_1)+\mathbb{P}(A_2)-\mathbb{P}(A_1\cap A_2),\]

For n=3,

\[\begin{align}\mathbb{P}(A_1\cup A_2\cup A_3)&=\mathbb{P}(A_1)+\mathbb{P}(A_2)+\mathbb{P}(A_3)\\ &\qquad-\mathbb{P}(A_1\cap A_2)-\mathbb{P}(A_1\cap A_3)-\mathbb{P}(A_2\cap A_3)+\mathbb{P}(A_1\cap A_2\cap A_3) \end{align}\]

In general, for any n,

\[\begin{align} \mathbb{P}\biggl(\bigcup_{i=1}^n A_i\biggr) & {} =\sum_{i=1}^n \mathbb{P}(A_i) -\sum_{i,j\,:\,i<j}\mathbb{P}(A_i\cap A_j) \\ &\qquad+\sum_{i,j,k\,:\,i<j<k}\mathbb{P}(A_i\cap A_j\cap A_k)-\ \cdots\cdots\ \pm \mathbb{P}\biggl(\bigcap_{i=1}^n A_i\biggr), \end{align}\]

This can also be written in closed form as

\[\mathbb{P}\biggl(\bigcup_{i=1}^n A_i\biggr) =\sum_{k=1}^n (-1)^{k-1}\sum_{\scriptstyle I\subset\{1,\ldots,n\}\atop\scriptstyle|I|=k} \mathbb{P}\biggl(\bigcap_{i\in I} A_i\biggr),\]

where the last sum runs over all subsets I of the indices 1, ..., n which contain exactly k elements.

Multiplication Rule

Model Validation

Checking/affirming underlying assumptions.

  • TBD

Computational Resources: Internet-based SOCR Tools

  • TBD

Examples

Computer simulations and real observed data.

  • TBD

Hands-on activities

Step-by-step practice problems.

  • TBD

References

  • TBD



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif