Difference between revisions of "SOCR EduMaterials Activities ApplicationsActivities Portfolio"

From SOCR
Jump to: navigation, search
(Portfolio theory)
(Portfolio Theory)
Line 1: Line 1:
 +
== Portfolio Theory ==
 
== Portfolio Theory ==
 
== Portfolio Theory ==
  
An investor has a certain amount of dollars to invest into two stocks <math>IBM</math> and <math>TEXACO</math>.  A portion of the available funds will be invested into  
+
An investor has a certain amount of dollars to invest into two stocks  
IBM (denote this portion of the funds with <math>x_A</math> and the remaining funds  
+
(<math>IBM</math> and <math>TEXACO</math>).  A portion of the available funds will be invested into  
 +
IBM (denote this portion of the funds with <math>x_A</math>) and the remaining funds  
 
into TEXACO (denote it with <math>x_B</math>) - so <math>x_A+x_B=1</math>.  The resulting portfolio  
 
into TEXACO (denote it with <math>x_B</math>) - so <math>x_A+x_B=1</math>.  The resulting portfolio  
 
will be <math>x_A R_A+x_B R_B</math>, where <math>R_A</math> is the monthly return of <math>IBM</math> and <math>R_B</math> is the  
 
will be <math>x_A R_A+x_B R_B</math>, where <math>R_A</math> is the monthly return of <math>IBM</math> and <math>R_B</math> is the  
monthly return of TEXACO.  The goal here is to  
+
monthly return of <math>TEXACO</math>.  The goal here is to  
 
find the most efficient portfolios given a certain amount of risk.   
 
find the most efficient portfolios given a certain amount of risk.   
 
Using market data from January 1980 until February 2001 we compute  
 
Using market data from January 1980 until February 2001 we compute  
 
that <math>E(R_A)=0.010</math>, <math>E(R_B)=0.013</math>, <math>Var(R_A)=0.0061</math>, <math>Var(R_B)=0.0046</math>, and  
 
that <math>E(R_A)=0.010</math>, <math>E(R_B)=0.013</math>, <math>Var(R_A)=0.0061</math>, <math>Var(R_B)=0.0046</math>, and  
<math>Cov(R_A,R_B)=0.00062</math>. We first want to minimize the variance of the portfolio.  This will be:
+
<math>Cov(R_A,R_B)=0.00062</math>. \\
 
+
We first want to minimize the variance of the portfolio.   
 
+
This will be:
 
<math>
 
<math>
\mbox{Minimize} \ \ mbox{Var}(x_A R_A+x_BR_B)
+
\mbox{Minimize} \ \ \mbox{Var}(x_A R_A+x_BR_B) \\
 +
\mbox{subject to} \ \ x_A+x_B=1
 
</math>
 
</math>
 +
Or
 
<math>
 
<math>
 +
\mbox{Minimize} \ \ x_A^2 Var(R_A)+x_B^2 Var(R_B) + 2x_Ax_BCov(R_A,R_B) \\
 
\mbox{subject to} \ \ x_A+x_B=1
 
\mbox{subject to} \ \ x_A+x_B=1
 
</math>
 
</math>
 +
Therefore our goal is to find <math>x_A</math> and <math>x_B</math>, the percentage of the
 +
available funds that will be invested in each stock.  Substituting
 +
<math>x_B=1-x_A</math> into the equation of the variance we get
 +
<math>
 +
x_A^2 Var(R_A)+(1-x_A)^2 Var(R_B) + 2x_A(1-x_A)Cov(R_A,R_B)
 +
</math>
 +
To minimize the above exression we take the derivative with respect to
 +
<math>x_A</math>, set it equal to zero and solve for <math>x_A</math>.  The result is:
 +
<math>
 +
x_A=\frac{Var(R_B) - Cov(R_A,R_B)}{Var(R_A)+Var(R_B)-2Cov(R_A,R_B)}
 +
</math>
 +
and therefore
 +
<math>
 +
x_B=\frac{Var(R_A) - Cov(R_A,R_B)}{Var(R_A)+Var(R_B)-2Cov(R_A,R_B)}
 +
</math>
 +
The values of <math>x_a</math> and <math>x_B</math> are:
 +
<math>
 +
x_a=\frac{0.0046-0.0062}{0.0061+0.0046-2(0.00062)} \Rightarrow x_A=0.42.
 +
</math>
 +
and <math>x_B=1-x_A=1-0.42 \Rightarrow x_B=0.58</math>.  Therefore if the investor invests
 +
<math>42 \%</math> of the available funds into <math>IBM</math> and the remaining <math>58 \%</math>
 +
into <math>TEXACO</math> the variance of the portfolio will be minimum and equal to:
 +
<math>
 +
Var(0.42R_A+0.58R_B)=0.42^2(0.0061)+0.58^2(0.0046)+2(0.42)(0.58)(0.00062)
 +
=0.002926.
 +
</math>
 +
The corresponding expected return of this porfolio will be:
 +
<math>
 +
E(0.42R_A+0.58R_B)=0.42(0.010)+0.58(0.013)=0.01174.
 +
</math>
 +
We can try many other combinations of <math>x_A</math> and <math>x_B</math> (but always <math>x_A+x_B=1</math>)
 +
and compute the risk and return for each resulting portfolio.  This is
 +
shown in the table and the graph below. \<math>0.05in]

Revision as of 00:53, 3 August 2008

Portfolio Theory

Portfolio Theory

An investor has a certain amount of dollars to invest into two stocks (\(IBM\) and \(TEXACO\)). A portion of the available funds will be invested into IBM (denote this portion of the funds with \(x_A\)) and the remaining funds into TEXACO (denote it with \(x_B\)) - so \(x_A+x_B=1\). The resulting portfolio will be \(x_A R_A+x_B R_B\), where \(R_A\) is the monthly return of \(IBM\) and \(R_B\) is the monthly return of \(TEXACO\). The goal here is to find the most efficient portfolios given a certain amount of risk. Using market data from January 1980 until February 2001 we compute that \(E(R_A)=0.010\), \(E(R_B)=0.013\), \(Var(R_A)=0.0061\), \(Var(R_B)=0.0046\), and \(Cov(R_A,R_B)=0.00062\). \\ We first want to minimize the variance of the portfolio. This will be\[ \mbox{Minimize} \ \ \mbox{Var}(x_A R_A+x_BR_B) \\ \mbox{subject to} \ \ x_A+x_B=1 \] Or \( \mbox{Minimize} \ \ x_A^2 Var(R_A)+x_B^2 Var(R_B) + 2x_Ax_BCov(R_A,R_B) \\ \mbox{subject to} \ \ x_A+x_B=1 \) Therefore our goal is to find \(x_A\) and \(x_B\), the percentage of the available funds that will be invested in each stock. Substituting \(x_B=1-x_A\) into the equation of the variance we get \( x_A^2 Var(R_A)+(1-x_A)^2 Var(R_B) + 2x_A(1-x_A)Cov(R_A,R_B) \) To minimize the above exression we take the derivative with respect to \(x_A\), set it equal to zero and solve for \(x_A\). The result is\[ x_A=\frac{Var(R_B) - Cov(R_A,R_B)}{Var(R_A)+Var(R_B)-2Cov(R_A,R_B)} \] and therefore \( x_B=\frac{Var(R_A) - Cov(R_A,R_B)}{Var(R_A)+Var(R_B)-2Cov(R_A,R_B)} \) The values of \(x_a\) and \(x_B\) are\[ x_a=\frac{0.0046-0.0062}{0.0061+0.0046-2(0.00062)} \Rightarrow x_A=0.42. \] and \(x_B=1-x_A=1-0.42 \Rightarrow x_B=0.58\). Therefore if the investor invests \(42 \%\) of the available funds into \(IBM\) and the remaining \(58 \%\) into \(TEXACO\) the variance of the portfolio will be minimum and equal to\[ Var(0.42R_A+0.58R_B)=0.42^2(0.0061)+0.58^2(0.0046)+2(0.42)(0.58)(0.00062) =0.002926. \] The corresponding expected return of this porfolio will be\[ E(0.42R_A+0.58R_B)=0.42(0.010)+0.58(0.013)=0.01174. \] We can try many other combinations of \(x_A\) and \(x_B\) (but always \(x_A+x_B=1\)) and compute the risk and return for each resulting portfolio. This is shown in the table and the graph below. \<math>0.05in]