Difference between revisions of "SOCR EduMaterials Activities Discrete Probability examples"
Line 5: | Line 5: | ||
*<math> X \sim b(8,0.3) </math>, <math> P(X=3)= {8 \choose 3} 0.3^30.7^5</math> | *<math> X \sim b(8,0.3) </math>, <math> P(X=3)= {8 \choose 3} 0.3^30.7^5</math> | ||
*<math> P(X \ge 1)=1-P(X=0)=1-.7^8 </math> | *<math> P(X \ge 1)=1-P(X=0)=1-.7^8 </math> | ||
− | *<math> E(X),</math>= <math>np</math> = <math>8 | + | *<math> E(X),</math>= <math>np</math> = <math>8 \times 0.3=2.4 </math> |
*<math> Sd(X)= \sqrt{npq}</math> | *<math> Sd(X)= \sqrt{npq}</math> | ||
* '''Example 2:''' | * '''Example 2:''' |
Revision as of 18:27, 23 April 2007
- Description: You can access the applets for the distributions at http://www.socr.ucla.edu/htmls/SOCR_Distributions.html .
- Example 1:
Find the probability that 3 out of 8 plants will survive a frost, given that any such plant will survive a frost with ptobability of 0.30. Also, find the probability that at least 1 out of 8 will survive a frost. What is the expected value and standard deviation of the number of plants that survive the frost?
- Answer:
- \( X \sim b(8,0.3) \), \( P(X=3)= {8 \choose 3} 0.3^30.7^5\)
- \( P(X \ge 1)=1-P(X=0)=1-.7^8 \)
- \( E(X),\)= \(np\) = \(8 \times 0.3=2.4 \)
- \( Sd(X)= \sqrt{npq}\)
- Example 2:
If the probabilities of having a male or female offspring are both 0.50, find the probability that a familiy's fifth child is their first son.
- Answer:
- \( 0.50^5 \)
- Example 3:
- a. \(X \sim b(4,0.8) \), \( P(X=2)= {4 \choose 2} 0.8^2 0.2^2\)
- b. \(P(X\ge 2)= {4 \choose 2} 0.8^2 0.2^2\)+\({4 \choose 3} 0.8^3 0.2^1\)+\({4 \choose 4} 0.8^4\)
- Example 4:
- \(0.7^4 0.3\)
- Example 5:
\( \frac{1}{0.30} \)
- Example 6:
- a. \(X \sim b(5,0.90) \), \( P(X=4)= {5 \choose 4} 0.9^4 0.1^1\)
- \(P(X\ge 1)= 1-P(X=0)= 1- 0.1^4 \)
- b. \(P(X=0)= 1-0.999= .001\)
\(0.001= 0.1^n\) \(n= 3\)