Difference between revisions of "AP Statistics Curriculum 2007 StudentsT"

From SOCR
Jump to: navigation, search
(Example)
(Example)
Line 31: Line 31:
 
{| class="wikitable" style="text-align:center; width:75%" border="1"
 
{| class="wikitable" style="text-align:center; width:75%" border="1"
 
|-
 
|-
| Variable ||N || N* || Mean ||SE||Mean||StDev ||Minimum ||  Q1|| Median ||  Q3 ||Maximum
+
| Variable ||N || N* || Mean ||SE of Mean||StDev ||Minimum ||  Q1|| Median ||  Q3 ||Maximum
 
|-
 
|-
 
| CD4 || 25|| 0 ||321.4||  14.8 || 73.8 ||208.0 ||261.5 || 325.0 ||394.0 || 449.0
 
| CD4 || 25|| 0 ||321.4||  14.8 || 73.8 ||208.0 ||261.5 || 325.0 ||394.0 || 449.0

Revision as of 21:52, 3 February 2008

General Advance-Placement (AP) Statistics Curriculum - Student's T Distribution

Very frequently in practive we do now know the population variance and therefore need to estimate it using the sample-variance. This requires us to introduce the T-distribution, which is a one-parameter distribution connecting \(Cauchy=T_{(df=1)} \longrightarrow T_{(df)}\longrightarrow N(0,1)=T_{(df=\infty)}\).

SOCR Distribution StudentT density.JPG

Student's T Distribution

The Student's t-distribution arises in the problem of estimating the mean of a normally distributed population when the sample size is small and the population variance is unknown. It is the basis of the popular Student's t-tests for the statistical significance of the difference between two sample means, and for confidence intervals for the difference between two population means.

Suppose X1, ..., Xn are independent random variables that are Normally distributed with expected value μ and variance σ2. Let \[ \overline{X}_n = {X_1+X_2+\cdots+X_n \over n}\] be the sample mean, and

\[{S_n}^2=\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}_n\right)^2\] be the sample variance. We already discussed the following statistic: \[Z=\frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\]

is normally distributed with mean 0 and variance 1, since the sample mean \(\scriptstyle \overline{X}_n \) is normally distributed with mean \( \mu\) and standard deviation \(\scriptstyle\sigma/\sqrt{n}\).

Gosset studied a related quantity under the pseudonym Student), \[T=\frac{\overline{X}_n-\mu}{S_n / \sqrt{n}},\] which differs from Z in that the (unknown) population standard deviation \(\scriptstyle \sigma\) is replaced by the sample standard deviation \(S_n\). Technically, \(\scriptstyle(n-1)S_n^2/\sigma^2\) has a Chi-square distribution \(\scriptstyle\chi_{n-1}^2\) distribution. Gosset's work showed that T has a specific probability density function, which approaches Normal(0,1) as the degree of freedom (df=sample-size -1) increases.

Computing with T-distribution

Example

Suppose a researcher wants to examine CD4 counts for HIV(+) patients seen at his clinic. She randomly selects a sample of n = 25 HIV(+) patients and measures their CD4 levels (cells/uL). Suppose she obtains the following results and we are interested in calculating a 95% (\(\alpha=0.025\)) confidence interval for \(\mu\):

Variable N N* Mean SE of Mean StDev Minimum Q1 Median Q3 Maximum
CD4 25 0 321.4 14.8 73.8 208.0 261.5 325.0 394.0 449.0

What do we know from the background information? \[\overline{y}= 321.4\] \[s = 73.8\] \[SE = 14.8\] \[n = 25\]

\[CI(\alpha)=CI(0.025): \overline{y} \pm t_{\alpha\over 2} {1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}.\]

\[321.4 \pm t_{(24, 0.025)}{73.8\over \sqrt{25}}\]

\[321.4 \pm 2.064\times 14.8\]

\[[290.85, 351.95]\]


References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif