Difference between revisions of "Formulas"

From SOCR
Jump to: navigation, search
m (Probability Density Functions (PDFs))
m (Transformations)
Line 60: Line 60:
 
* [http://socr.ucla.edu/htmls/dist/Laplace_Distribution.html Exponential to Laplace Transformation]: <math> x_1 - x_2 \ </math>
 
* [http://socr.ucla.edu/htmls/dist/Laplace_Distribution.html Exponential to Laplace Transformation]: <math> x_1 - x_2 \ </math>
 
* [http://en.wikipedia.org/wiki/Beta_distribution Beta to Arcsine Transformation]: <math> \alpha = \beta = \frac{1}{2} </math>  
 
* [http://en.wikipedia.org/wiki/Beta_distribution Beta to Arcsine Transformation]: <math> \alpha = \beta = \frac{1}{2} </math>  
* [http://en.wikipedia.org/wiki/Student's_t_distribution Noncentral Student's T to Normal]: <math> Z=\lim_{\nu\to\infty}T </math>
+
* [http://en.wikipedia.org/wiki/Student's_t_distribution Noncentral Student's T to Normal Transformation]: <math> Z=\lim_{\nu\to\infty}T </math>
* [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html Noncentral Student's T to Student's T]: <math> \mu = 0 \ </math>
+
* [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html Noncentral Student's T to Student's T Transformation]: <math> \mu = 0 \ </math>
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Pareto]: <math> \lambda X ^{-1/K} \ </math>
+
 
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Benford]: <math> 10^X \ </math>
+
 
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Pareto Transformation]: <math> \lambda X ^{-1/K} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Benford Transformation]: <math> 10^X \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Exponential Transformation]: <math> n(1-X_{(n)}), n -> \infty </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Log Logistic Transformation]: <math> \frac{1}{\lambda}(\frac{1-X}{X})^{1/k} </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Standard Triangular Transformation]: <math> X_1 - X_2</math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Logistic Exponential Transformation]: <math> \frac{log[1+(\frac{X}{1-X})^{1/K}]}{\lambda} </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard Uniform to Beta Transformation]:  If X has a standard uniform distribution, <math> Y = 1 - X^{1/n} \ </math> has a beta distribution
 +
 
 +
* [http://en.wikipedia.org/wiki/Beta_distribution Beta to Standard Uniform Transformation]: <math> \beta = \gamma = 1 </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Continuous Uniform to Standard Uniform Transformation]: <math> a = 0, b = 1 </math>
 +
 
 
* [http://socr.ucla.edu/htmls/dist/Pareto_Distribution.html Pareto to Exponential]: <math> log(X/\lambda) \ </math>
 
* [http://socr.ucla.edu/htmls/dist/Pareto_Distribution.html Pareto to Exponential]: <math> log(X/\lambda) \ </math>
 
* [http://socr.ucla.edu/htmls/dist/LogisticExponential_Distribution.html Logistic Exponential to Exponential]: <math> \beta = 1 \ </math>
 
* [http://socr.ucla.edu/htmls/dist/LogisticExponential_Distribution.html Logistic Exponential to Exponential]: <math> \beta = 1 \ </math>
 
* [http://socr.ucla.edu/htmls/dist/ZipfMandelbrot_Distribution.html Zipf to Discrete Uniform]: <math> a = 0, a = 1, b = n \ </math>
 
* [http://socr.ucla.edu/htmls/dist/ZipfMandelbrot_Distribution.html Zipf to Discrete Uniform]: <math> a = 0, a = 1, b = n \ </math>
 
* [http://socr.ucla.edu/htmls/dist/DiscreteUniform_Distribution.html Discrete Uniform to Rectangular]: <math> a = 0, b = n \ </math>
 
* [http://socr.ucla.edu/htmls/dist/DiscreteUniform_Distribution.html Discrete Uniform to Rectangular]: <math> a = 0, b = n \ </math>
 +
 +
  
  

Revision as of 01:53, 25 November 2008

Probability Density Functions (PDFs)

  • Standard Normal PDF\[f(x)= {e^{-x^2} \over \sqrt{2 \pi}}\]
  • General Normal PDF\[f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}\]
  • Chi-Square PDF\[\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,\]
  • Gamma PDF\[x^{k-1} \frac{\exp{\left(-x/\theta\right)}}{\Gamma(k)\,\theta^k}\,\!\]
  • Beta PDF\[ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\, x^{\alpha-1}(1-x)^{\beta-1}\!\]
  • Student's T PDF\[\frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu} \right)^{-(\frac{\nu+1}{2})}\!\]
  • Poisson PDF\[\frac{e^{-\lambda} \lambda^k}{k!}\!\]
  • Chi PDF\[\frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}\]
  • Cauchy PDF\[\frac{1}{\pi\gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\]
  • Exponential PDF\[ \lambda e^{-\lambda x},\; x \ge 0\]
  • F Distribution PDF\[ \frac {(\frac {d_1 x}{d_1 x + d_2})^{ d_1/2} ( 1 - \frac {d_1 x} {d_1 x + d2}) ^ {d_2/2}} { xB(d_1/2 , d_2/2) } \]
  • Bernoulli PMF\[ f(k;p) \begin{cases} \mbox{p if k = 1,} \\ \mbox{1 - p if k = 0,} \\ \mbox{0 otherwise} \end{cases} \]
  • Binomial PMF\[ \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}\]
  • Negative Binomial PMF\[ \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k \]
  • Geometric PMF\[ \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p \]
  • Erlang PDF\[ \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!} \]
  • Laplace PDF\[ \frac {1}{2b} \exp (- \frac{|x-\mu|}{b}) \]
  • Continuous Uniform PDF\[ f(x) = \begin{cases} \frac{1}{b-a} \mbox{ for } a \le x \le b \\ 0 \mbox{ for } x < a \mbox{ or } x > b \end{cases} \]
  • Discrete Uniform PMF\[ f(x) = \begin{cases} 1/n \mbox{ for } a \le x \le b, \\ 0 \mbox{ otherwise} \end{cases} \]
  • Logarithmic PDF\[ f(k) = \frac{-1}{ln(1-p)} \frac{p^k}{k} \]
  • Logistic PDF\[ f(x;u,s) = \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2} \]
  • Logistic-Exponential PDF\[ f(x;\beta) = \frac { \beta e^x(e^x - 1)^{\beta-1}} {(1+(e^x-1)^\beta))^2} \mbox{ }\mbox{ }x, \beta > 0 \]
  • Power Function PDF\[ f(x) = \frac {\alpha(x-a)^{\alpha-1}} {(b-a)^\alpha} \]
  • Benford's Law\[ P(d) = \log_b(d + 1)- \log_b(d) = \log_b(\frac{d + 1}{d}) \]
  • Pareto PDF\[ \frac {kx^k_m} {x^{k+1}} \]
  • Non-Central Student T PDF\[ f(t)=\frac{\nu^{\nu/2}e^{-\nu\mu^2/2(t^2+\nu)}} {\sqrt{\pi}\Gamma(\nu/2)2^{(\nu-1)/2}(t^2+\nu)^{(\nu+1)/2}} \times\int\limits_0^\infty x^\nu\exp\left[-\frac{1}{2}\left(x-\frac{\mu t}{\sqrt{t^2+\nu}}\right)^2\right]dx \]
  • ArcSine PDF\[ f(x) = \frac{1}{\pi \sqrt{x(1-x)}} \]
  • Circle PDF\[ f(x)={2\sqrt{r^2 - x^2}\over \pi r^2 }, \forall x \in [-r , r] \]
  • U-Quadratic PDF\[\alpha \left ( x - \beta \right )^2 \]
  • Standard Uniform PDF\[U(0,1) = f(x) = \begin{cases} {1} \mbox{ for } 0 \le x \le 1 \\ 0 \mbox{ for } x < 0 \mbox{ or } x > 1 \end{cases} \]

Transformations







Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif