SOCR News MIDAS Biomedical Bootcamp 2021
Contents
SOCR News & Events: 2021 MIDAS Data Science for Biomedical Scientists Bootcamp
The Michigan Institute for Data Science (MIDAS) is organizing a week-long Data Science for Biomedical Scientists Bootcamp. This workshop will introduce data science from a biomedical perspective. Bootcamp participants will learn about practical data science applications in biomedical and health case-studies. Modern data science, machine learning, artificial intelligence, and biostatistical methods will be integrated into the training curriculum.
Instructors
- Kayvan Najarian
- Nambi Nallasamy
- Ivo Dinov, University of Michigan, SOCR, MIDAS.
- Michael Mathis
- Ryan Stidham
- Jonathan Gryak
- Michael Sjoding
Workshop Logistics
- Dates/Times: Monday through Friday, July 26-30, 2021, 7:00-16:00 US-EDT (daily).
- Registration: Registration Link.
- URL: MIDAS Bootcamp Website.
- Session Format: Two daily sessions (3-hours each).
- Session URL.
Overview
- Target Audience: This workshop is open to all biomedical scientists. The curriculum is geared towards junior faculty members who plan to incorporate data science in their scholarly work.
- Prerequisite: College level math and statistics.
- Main components:
- Math and algorithmic foundations for data science
- Key concepts of data science
- Introduction to Python programming
- Machine learning, support vector machine, artificial neural network, deep learning
- Example of biomedical research projects with data science
- Incorporating data science in biomedical grant proposals
Program Schedule
Day | Time | Instructor | Session Topic | Content |
---|---|---|---|---|
Monday | 7:00 - 8:30 AM | Kayvan Najarian | Session 1: Welcome and introduction to the program | A review of the program and logistics |
Why data science, artificial intelligence, and machine learning? | ||||
8:30 - 8:45 AM | Break | |||
8:45 - 10:15 AM | Ivo Dinov | Session 2: Math foundations I – Brief introduction to mathematical foundations of machine learning | Math notation and fundamentals | |
Linear Algebra and Matrix Computing | ||||
Optimization theory | ||||
Differential Equations | ||||
10:15 - 10:30 AM | Break | |||
10:30 AM - 12:00 PM | Ivo Dinov | Session 3: Math foundations II – Brief introduction to mathematical foundations of machine learning | Dimensionality | |
Principal Component Analysis (PCA) | ||||
High-dimensional Visualization (hands-on demos) | ||||
12:00 - 1:00 PM | Lunch Break | |||
1:00 - 2:30 PM | Kayvan Najarian | Session 4: Clustering vs Classification; k-means; k-Nearest Neighbors | Supervised & Unsupervised methods | |
k-means/Spectral/Hierarchical clustering (unsupervised) | ||||
k-NN (supervised), Naïve Bayes classification | ||||
2:30 - 2:45 PM | Break | |||
2:45 - 4:15 PM | TBA | Session 5: Introduction to Python programming | Basics of Python programming | |
Tuesday | 7:00 - 8:30 AM | Ivo Dinov | Session 6: Linear regression, logistic regression | Simple linear regression, logit modeling |
Ordinary least squares estimation | ||||
Example scenarios | ||||
8:30 - 8:45 AM | Break | |||
8:45 - 10:15 AM | Kayvan Najarian | Session 7: Simple classification methods and feature analysis | Naïve Bayes classification, Feature selection and reduction | |
10:15 - 10:30 AM | Break | |||
10:30 AM - 12:00 PM | Kayvan Najarian | Session 8: Model validation and assessment | Metrics for assessment of model performance, n-fold cross validation | |
12:00 - 1:00 PM | Lunch Break | |||
1:00 - 2:30 PM | Michael Mathis | Session 9: Using machine learning for clinical and health applications I | ||
2:30 - 2:45 PM | Break | |||
2:45 - 4:15 PM | TBA | Session 10: Python programming for linear regression, logistic regression; ridge regression and Naïve Bayes | Python for applying simple machine learning methods to a clinical decision-making problem | |
Wednesday | 7:00 - 8:30 AM | Kayvan Najarian | Session 11: Artificial neural networks I | Fundamentals of artificial neural networks and their advantages/limitations |
8:30 - 8:45 AM | Break | |||
8:45 - 10:15 AM | Kayvan Najarian | Session 12: Regression trees | Classification and regression tree (CART) | |
10:15 - 10:30 AM | Break | |||
10:30 AM - 12:00 PM | Kayvan Najarian | Session 13: Random Forest | Ensemble use of regression trees for random forest and other boosting methods | |
12:00 - 1:00 PM | Lunch Break | |||
1:00 - 2:30 PM | Ryan Stidham | Session 14: Using machine learning for clinical and health applications II | ||
2:30 - 2:45 PM | Break | |||
2:45 - 4:15 PM | TBA | Session 15: Python programming for neural networks, regression trees and random forest | Python for applying CART, random forest, and neural networks to a clinical decision-making problem | |
Thursday | 7:00 - 8:30 AM | Kayvan Najarian | Session 16: Support vector machines | Using Kernel methods for support vector machines (SVM) |
8:30 - 8:45 AM | Break | |||
8:45 - 10:15 AM | Jonathan Gryak | Session 17: Deep Learning I | Deep Learning overview, appropriate uses of deep learning, convolutional neural networks, U-Net | |
10:15 - 10:30 AM | Break | |||
10:45 AM - 12:00 PM | Jonathan Gryak | Session 18: Deep Learning II | LSTM, Autoencoders | |
12:00 - 1:00 PM | Lunch Break | |||
1:00 - 2:30 PM | TBA | Session 19: Python programming for support vector machine | Python for applying SVM to a clinical decision-making problem | |
2:30 - 2:45 PM | Break | |||
2:45-4:15 PM | TBA | Session 20: Python programming for deep learning | Python for applying deep learning models to a clinical decision-making problem | |
7:00-8:30 AM | ||||
Friday | Kayvan Najarian | Session 21: Strategies to add a data science flavor to health-related projects and grant proposals | Some general tips on how to integrate data Scientific ideas in primarily clinical/biomedical grant proposals | |
8:30-8:45 AM | Break | |||
8:45 - 10:15 AM | Michael Sjoding | Session 22: Using machine learning for clinical and health applications III | ||
10:15-10:30 AM | Break | |||
10:30 AM - 12:00 PM | Nambi Nallasamy | Session 23: Using machine learning for clinical and health applications IV | ||
12:00-1:00 PM | Lunch Break | |||
1:00 - 2:30 PM | Michael Mathis | Session 24: Guidelines on using machine learning for clinical applications | ||
2:30 - 2:45 PM | Break | |||
2:45 - 4:15 PM | Ivo Dinov, Jonathan Gryak, Michael Mathis, Kayvan Najarian Nambi Nallasamy, and Michael Sjoding | Session 25: Wrap-up | Q&A; plans for follow-up sessions during the coming year |
Additional Resources
- Course Flyer
- DSPA Wikipedia.
- DSPA Springer Page & SpringerLink (PDF Download).
- dspa.predictive.space & DSPA MOOC Canvas Site.
Translate this page: