SOCR EduMaterials Activities More Examples

From SOCR
Revision as of 02:13, 1 June 2007 by Nchristo (talk | contribs)
Jump to: navigation, search

Example 1:

From a large shipment of peaches, 12 are selected for quality control. Suppose that in this particular shipment only \(65 \%\) of the peaches are unbruised. If among the 12 peaches 9 or more are unbruised the shipment is classified A. If between 5 and 8 are unbruised the shipment is classified B. If fewer than 5 are unbruised the shipment is classified C. Compute the probability that the shipment will be classified A, B, C.

We can use the formula and compute

\( P(A) = P(X \ge 9) = \sum_{x=9}^{12} {12 \choose x} 0.65^x 0.35^{12-x}=\cdots \)

\( P(B) = P(5 \le X \le 8) = \sum_{x=5}^{8} {12 \choose x} 0.65^x 0.35^{12-x}=\cdots \)

\( P(C) = P(X < 5) = \sum_{x=0}^{4} {12 \choose x} 0.65^x 0.35^{12-x}=\cdots \)

Or, much easier using SOCR...

Here is the distribution of the number of unbruised peaches among the 12 selected. After we enter \(n=12\) and \(p=0.65\) we get the distribution below:

Error creating thumbnail: File missing

Now, in the {\it Left Cut Off} and {\it Right Cut Off} boxes (left down corner of the applet) enter the numbers 5 and 8 respectively. What do you observe?

SOCR Activities More Examples Christou peaches2.jpg


\noindent The distribution is divided into three parts. The left part (less than 5), the right part (above 8), and the between part (between 5 and 8 included). All the SOCR distributions applets are designed in the same way. From the applet the probabilities are $P(A)=0.346653, P(B)=0.627840, P(C)=0.025507$.</math>