AP Statistics Curriculum 2007 Infer 2Means Indep

From SOCR
Revision as of 00:11, 10 February 2008 by IvoDinov (talk | contribs)
Jump to: navigation, search

General Advance-Placement (AP) Statistics Curriculum - Inferences about Two Means: Independent Samples

In the previous section we discussed the inference on two paired random samples. Now, we show how to do inference on two independent samples.

Indepenent Samples Designs

Independent samples designs refer to design of experiments or observations where all measurements are individually independent from each other within their groups and the groups are independent. The groups may be drawn from different populations with different distribution characteristics.

Background

  • Recall that for a random sample {\(X_1, X_2, X_3, \cdots , X_n\)} of the process, the population mean may be estimated by the sample average, \(\overline{X_n}={1\over n}\sum_{i=1}^n{X_i}\).
  • The standard error of \(\overline{x}\) is given by \({{1\over \sqrt{n}} \sqrt{\sum_{i=1}^n{(x_i-\overline{x})^2\over n-1}}}\).

Analysis Protocol for Independent Designs

To study independent samples we would like to examine the differences between two group means. Suppose {\(X_1^1, X_2^1, X_3^1, \cdots , X_n^1\)} and {\(Y_1, Y_2, Y_3, \cdots , Y_n\)} represent the two independent samples. Then we want to study the differences of the two group means relative to the internal sample variations. If the two samples were drawn from populations that had different centers, then we would expect that the two sample averages will be distinct.

Large Samples

  • Significance Testing: We have a standard null-hypothesis \(H_o: \mu_X -\mu_Y = \mu_o\) (e.g., \(\mu_o=0\)). Then the test statistics is:

\[Z_o = {\overline{x}-\overline{y}-\mu_o \over SE(\overline{x}-\overline{y})} \sim N(0,1)\]. \[z_o= {\overline{x}-\overline{y} \over \sqrt{{1\over {n_1}} {\sum_{i=1}^{n_1}{(x_i-\overline{x})^2\over n_1-1}} + {1\over {n_2}} {\sum_{i=1}^{n_2}{(y_i-\overline{y})^2\over n_2-1}}}}\]

  • Confidence Intervals\[(1-\alpha)100%\] confidence interval for \(\mu_1-\mu_2\) will be

\[CI(\alpha): \overline{x}-\overline{y} \pm z_{\alpha\over 2} SE(\overline{x}-\overline{y})= \overline{x}-\overline{y} \pm z_{\alpha\over 2} \sqrt{{1\over {n_1}} {\sum_{i=1}^{n_1}{(x_i-\overline{x})^2\over n_1-1}} + {1\over {n_2}} {\sum_{i=1}^{n_2}{(y_i-\overline{y})^2\over n_2-1}}}\]. Note that the \(SE(\overline{x} -\overline{x})=\sqrt{SE(\overline{x})+SE(\overline{y})}\), as the samples are independent. Also, \(z_{\alpha\over 2}\) is the critical value for a Standard Normal distribution at \({\alpha\over 2}\).

Small Samples

  • Significance Testing: Again, we have a standard null-hypothesis \(H_o: \mu_X -\mu_Y = \mu_o\) (e.g., \(\mu_o=0\)). Then the test statistics is:

\[T_o = {\overline{x}-\overline{y}-\mu_o \over SE(\overline{x}-\overline{y})} \sim T(df)\].

The degrees of freedom is\[df={\left \( SE^2(\overline{x})+SE^2(\overline{x}) \right \)^2 \over {SE^4(\overline{x}) \over n_1-1} + {SE^4(\overline{y}) \over n_2-1} } \approx n_1+n_2-2.\] Always round up the degrees of freedom to the next larger integer.

\[t_o= {\overline{x}-\overline{y} \over \sqrt{{1\over {n_1}} {\sum_{i=1}^{n_1}{(x_i-\overline{x})^2\over n_1-1}} + {1\over {n_2}} {\sum_{i=1}^{n_2}{(y_i-\overline{y})^2\over n_2-1}}}}\]

  • Confidence Intervals\[(1-\alpha)100%\] confidence interval for \(\mu_1-\mu_2\) will be

\[CI(\alpha): \overline{x}-\overline{y} \pm t_{df, {\alpha\over 2}} SE(\overline{x}-\overline{y})= \overline{x}-\overline{y} \pm t_{df, {\alpha\over 2}} \sqrt{{1\over {n_1}} {\sum_{i=1}^{n_1}{(x_i-\overline{x})^2\over n_1-1}} + {1\over {n_2}} {\sum_{i=1}^{n_2}{(y_i-\overline{y})^2\over n_2-1}}}\]. Note that the \(SE(\overline{x} -\overline{x})=\sqrt{SE(\overline{x})+SE(\overline{y})}\), as the samples are independent.

The degrees of freedom is\[df={\left \( SE^2(\overline{x})+SE^2(\overline{x}) \right \)^2 \over {SE^4(\overline{x}) \over n_1-1} + {SE^4(\overline{y}) \over n_2-1} } \approx n_1+n_2-2.\] Always round up the degrees of freedom to the next larger integer.

Also, \(t_{df, {\alpha\over 2}}\) is the critical value for a Student's T distribution at \({\alpha\over 2}\).



References




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif