Formulas

From SOCR
Revision as of 00:14, 27 April 2010 by Shelley zhouyuhao (talk | contribs) (Probability Density Functions (PDFs))
Jump to: navigation, search

Probability Density Functions (PDFs)

  • Standard Normal PDF\[f(x)= {e^{-x^2} \over \sqrt{2 \pi}}\]
  • General Normal PDF\[f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}\]
  • Chi-Square PDF\[\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,\]
  • Gamma PDF\[x^{k-1} \frac{\exp{\left(-x/\theta\right)}}{\Gamma(k)\,\theta^k}\,\!\]
  • Beta PDF\[ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\, x^{\alpha-1}(1-x)^{\beta-1}\!\]
  • Student's T PDF\[\frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu} \right)^{-(\frac{\nu+1}{2})}\!\]
  • Poisson PDF\[\frac{e^{-\lambda} \lambda^k}{k!}\!\]
  • Chi PDF\[\frac{2^{1-k/2}x^{k-1}e^{-x^2/2}}{\Gamma(k/2)}\]
  • Cauchy PDF\[\frac{1}{\pi\gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\]
  • Exponential PDF\[ \lambda e^{-\lambda x},\; x \ge 0\]
  • F Distribution PDF\[ \frac {(\frac {d_1 x}{d_1 x + d_2})^{ d_1/2} ( 1 - \frac {d_1 x} {d_1 x + d2}) ^ {d_2/2}} { xB(d_1/2 , d_2/2) } \]
  • Bernoulli PMF\[ f(k;p) \begin{cases} \mbox{p if k = 1,} \\ \mbox{1 - p if k = 0,} \\ \mbox{0 otherwise} \end{cases} \]
  • Binomial PMF\[ \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}\]
  • Multinomial PMF\[f(x_1, x_2, \cdots, x_k)={n\choose x_1,x_2,\cdots, x_k}p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}\], where \(x_1+x_2+\cdots+x_k=n\), \(p_1+p_2+\cdots+p_k=1\), and \(0 \le x_i \le n, 0 \le p_i \le 1\).
  • Negative Binomial PMF\[ \begin{pmatrix} k + r - 1 \\ k \end{pmatrix} p^r(1-p)^k \]
  • Negative-Multinomial Binomial PMF\[ P(k_o, \cdots, k_r) = \Gamma(k_o + \sum_{i=1}^r{k_i}) \frac{p_o^{k_o}}{\Gamma(k_o)} \prod_{i=1}^r{\frac{p_i^{k_i}}{k_i!}} \]
  • Geometric PMF\[ \begin{pmatrix} 1-p \end{pmatrix} ^{k-1}p \]
  • Erlang PDF\[ \frac {\lambda x^{k-1}e^{-\lambda x}} {(k-1)!} \]
  • Laplace PDF\[ \frac {1}{2b} \exp (- \frac{|x-\mu|}{b}) \]
  • Continuous Uniform PDF\[ f(x) = \begin{cases} \frac{1}{b-a} \mbox{ for } a \le x \le b \\ 0 \mbox{ for } x < a \mbox{ or } x > b \end{cases} \]
  • Discrete Uniform PMF\[ f(x) = \begin{cases} 1/n \mbox{ for } a \le x \le b, \\ 0 \mbox{ otherwise} \end{cases} \]
  • Logarithmic PDF\[ f(k) = \frac{-1}{ln(1-p)} \frac{p^k}{k} \]
  • Logistic PDF\[ f(x;u,s) = \frac{e^{-(x-\mu)/s}} {s(1+e^{-(x-\mu)/s})^2} \]
  • Logistic-Exponential PDF\[ f(x;\beta) = \frac { \beta e^x(e^x - 1)^{\beta-1}} {(1+(e^x-1)^\beta))^2} \mbox{ }\mbox{ }x, \beta > 0 \]
  • Power Function PDF\[ f(x) = \frac {\alpha(x-a)^{\alpha-1}} {(b-a)^\alpha} \]
  • Benford's Law\[ P(d) = \log_b(d + 1)- \log_b(d) = \log_b(\frac{d + 1}{d}) \]
  • Pareto PDF\[ \frac {kx^k_m} {x^{k+1}} \]
  • Non-Central Student T PDF\[ f(t)=\frac{\nu^{\nu/2}e^{-\nu\mu^2/2(t^2+\nu)}} {\sqrt{\pi}\Gamma(\nu/2)2^{(\nu-1)/2}(t^2+\nu)^{(\nu+1)/2}} \times\int\limits_0^\infty x^\nu\exp\left[-\frac{1}{2}\left(x-\frac{\mu t}{\sqrt{t^2+\nu}}\right)^2\right]dx \]
  • ArcSine PDF\[ f(x) = \frac{1}{\pi \sqrt{x(1-x)}} \]
  • Circle PDF\[ f(x)={2\sqrt{r^2 - x^2}\over \pi r^2 }, \forall x \in [-r , r] \]
  • U-Quadratic PDF\[\alpha \left ( x - \beta \right )^2 \]
  • Standard Uniform PDF\[U(0,1) = f(x) = \begin{cases} {1} \mbox{ for } 0 \le x \le 1 \\ 0 \mbox{ for } x < 0 \mbox{ or } x > 1 \end{cases} \]
  • Zipf\[\frac{1/(k+q)^s}{H_{N,s}}\]
  • Inverse Gamma\[\frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1} \exp \left(\frac{-\beta}{x}\right)\]
  • Fisher-Tippett\[\frac{z\,e^{-z}}{\beta}\!\]
    where \(z = e^{-\frac{x-\mu}{\beta}}\!\)
  • Gumbel\[f(x) = e^{-x} e^{-e^{-x}}.\]
  • HyperGeometric\[{{{m \choose k} {{N-m} \choose {n-k}}}\over {N \choose n}}\]
  • Log-Normal\[\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)-\mu\right)^2}{2\sigma^2}\right]\]
  • Gilbrats\[\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(\ln(x)\right)^2}{2\sigma^2}\right]\]
  • Hyperbolic Secant\[\frac12 \; \operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\!\]
  • Gompertz\[b e^{-bx} e^{-\eta e^{-bx}}\left[1 + \eta\left(1 - e^{-bx}\right)\right]\]
  • Standard Cauchy\[ f(x; 0,1) = \frac{1}{\pi (1 + x^2)}. \!\]
  • Rectangular\[ f(x)=\frac{1}{n+1}.(x=0,1,...,n)\!\]
  • Beta-Binomial\[ f(x)=\frac{\Gamma(x+a)\Gamma(n-x+b)\Gamma(a+b)\Gamma(n+2)}{(n+1)\Gamma(a+b+n)\Gamma(a)\Gamma(b)\Gamma(x+1)\Gamma(n-x+1)}.(x=0,1,...,n)\!\]
  • Negative Hypergeometric\[ f(x)=\frac{\begin{pmatrix} n_1+x-1 \\ x \end{pmatrix} \begin{pmatrix} n_3-n_1+n_2-x-1 \\ n_2-x \end{pmatrix}}{\begin{pmatrix} n_3+n_2-1 \\ n_2 \end{pmatrix}}. (x=max(0,n_1+n_2-n_3),...,n_2)\!\]
  • Standard Power\[ f(x; \beta) = \beta x^{\beta - 1} \!\]
  • Power_Series\[ f(x; c; A(c)) = a(x) c^x / A(c). (x=(0,1,...), c>0, A(c)=\sum_{x}a(x) c^x) \!\]
  • Zeta\[ f(x)=\frac{1}{x^a \sum_{i=1}^{\infty}(\frac{1}{i})^a}. (x=1,2,...) \!\]
  • Logarithm\[ f(x)=\frac{-(1-c)^x}{x\log c}. (x=1,2,..., 0<c<1) \!\]
  • Beta_Pascal\[ f(x; a, b, n) = \binom{n-1+x}{x} \frac{B(n+a, b+x)}{B(a,b)}. (x=(0,1,...); a+b=n) \!\]
  • Gamma_Poisson\[ f(x; \alpha, \beta) = \frac{\Gamma(x+\beta) \alpha^x}{\Gamma(\beta) (1+\alpha)^{\beta+x} x!}.(x=(0,1,...); \alpha>0; \beta>0) \!\]
  • Pascal\[ f(x; p, n) = \binom{n-1+x}{x} p^n (1-p)^x. (x=(0,1,...,n); 0 \leq p \leq 1)\!\]
  • Polya\[ f(x; n, p, \beta) = \binom{n}{x} \frac{\prod_{j=0}^{x-1}(p+j\beta) \prod_{k=0}^{n-x-1}(1-p+k\beta)}{\prod_{i=0}^{n-1}(1+i\beta)}. (x=\{0,1,...,n\}) \!\]
  • Normal-Gamma\[ f(x, \tau; \mu, \lambda,\alpha,\beta) = \frac{\beta^\alpha \sqrt(\lambda)}{\Gamma(\alpha) \sqrt(2 \pi)} \tau^{\alpha-1/2} exp(-\beta \tau) exp(-\frac{\lambda \tau (x-\mu)^2}{2}).(\tau>0) \!\]
  • Discrete_Weibull\[ f(x; p, \beta) = (1-p)^{x^\beta}-(1-p)^{(x+1)^\beta}. (x=\{0,1,...\}) \!\]
  • Log Gamma\[ f(x)=[1/ \alpha^\beta \Gamma(\beta)]e^{\beta x}e^{-e^x/a}. (-\infty<x<\infty) \!\]
  • Generalized Gamma\[ f(x)=\frac{\gamma}{\alpha^{\gamma \beta}\Gamma(\beta)}x^{\gamma \beta-1}e^{-(x/\alpha)^\gamma}. (x>0) \!\]
  • Noncentral-Beta\[ f(x; \beta, \gamma, \delta) = \sum_{i=0}^{\infty}\frac{\Gamma(i+\beta+\gamma)}{\Gamma(\gamma) \Gamma(i+\beta)} \frac{exp(-\delta/2)}{i!} (\delta/2)^i x^{i+\beta-1} (1-x)^{\gamma-1}. (0 \leq x \leq 1). \!\]
  • Inverse Gausian\[ f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2}. (x>0) \!\]
  • Noncentral_chi-square\[ f(x; n,\delta) = f(x; n,\delta) = \sum_{k=0}^{\infty}\frac{exp(-\delta/2) (\delta/2)^k}{k!}\frac{exp(-x/2) x^{(n+2k)/2-1}}{2^{(n+2k)/2} \Gamma(\frac{n+2k}{2})}. \!\]
  • Standard Wald\[ f(x)=\sqrt{\frac{\lambda}{2\pi x^3}}e^{-\frac{\lambda}{2x}(x-1)^2}. (x>0) \!\]
  • Inverted Beta\[ f(x)=\frac{x^{\beta-1}(1+x)^{-\beta-\gamma}}{B(\beta,\gamma)}. (x>0, \beta>1, \gamma>1) \!\]
  • Arctangent\[ f(x; \lambda, \phi)= \frac{\lambda}{[arctan(\lambda \phi)+\pi/2][1+\lambda^2 (x - \phi)^2]} (x \geq 0, -\infty < \lambda < \infty) \!\]
  • Makeham\[ f(x) = (\gamma + \delta\kappa^x)exp(-\gamma x-\frac{\delta (\kappa^x-1)}{log(\kappa)}). x>0 \!\]
  • Hypoexponential\[ f(x) = \sum_{i=1}^{n}(1/\alpha_i)exp(-x/\alpha_i)(\prod_{j=1,j\neq i}^{n}\frac{\alpha_i}{\alpha_i-\alpha_j}). x>0 \!\]
  • Doubly Noncentral t\[ \!\]
  • Hyperexponential\[ f(x) = \sum_{i=1}^{n}\frac{p_i}{\alpha_i}e^{-x/\alpha_i}. x>0 \!\]
  • Muth\[ f(x) = (e^{\kappa x}-\kappa)e^{-(1/\kappa)e^{\kappa x}+\kappa x+1/\kappa}. x>0 \!\]
  • Error\[ f(x) = \frac{exp[-(|x-a|/b)^{2/c}/2]}{b 2^{c/2+1}\Gamma(1+c/2)}. -\infty < x < \infty \!\]
  • Minimax\[ f(x) = \beta\gamma x^{\beta-1}(1-x^\beta)^{\gamma-1}. 0<x<1 \!\]
  • Noncentral F\[ f(x) = \sum_{i=0}^{\infty}\frac{\Gamma(\frac{2i+n_1+n_2}{2})(n_1/n_2)^{(2i+n_1)/2}x^{(2i+n_1-2)/2}e^{-\delta/2}(\delta/2)^i}{\Gamma(n_2/2)\Gamma(\frac{2i+n_1}{2})i!(1+\frac{n_1}{n_2}x)^{(2i+n_1+n_2)/2}}. x>0 \!\]
  • IDB\[ f(x) = \frac{(1+\kappa x)\delta x+\gamma}{(1+\kappa x)^{\gamma/\kappa+1}}e^{-\delta x^2/2}. x>0 \!\]
  • Standard Power\[ f(x) = \beta x^{\beta-1}. 0<x<1 \!\]
  • Rayleigh\[ f(x) = \frac{2x}{\alpha}e^{-x^2/\alpha}. x>0 \!\]
  • Standard Triangular\[ f(x) = \begin{cases} x+1, -1<x<0 \\ 1 - x, 0 \leq x<1 \end{cases} \!\]
  • Doubly noncentral F\[ f(x)= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}[\frac{e^{-\delta/2}(\frac{1}{2}\delta)^j}{j!}][\frac{e^{-\gamma/2}(\frac{1}{2}\gamma)^k}{k!}]\times n_1^{(n_1/2)+j}n_2^{(n_2/2)+k}x^{(n_1/2)+j-1}\times (n_2+n_1 x)^{-\frac{1}{2}(n_1+n_2)-j-k}\times [B(\frac{1}{2}n_1+j,\frac{1}{2}n_2+k)]^{-1}. x>0 \!\]
  • Power\[ f(x)=\frac{\beta x^{\beta-1}}{\alpha^\beta}. 0<x<\alpha \!\]
  • Weibull\[ f(x)=(\beta/\alpha)x^{\beta-1}exp[-(1/\alpha)x^\beta]. x>0 \!\]
  • Log-logistic\[ f(x)=\frac{\lambda \kappa(\lambda x)^{\kappa-1}}{[1+(\lambda x)^\kappa]^2}. x>0 \!\]
  • TSP\[ f(x) = \begin{cases} \frac{n}{b-a}(\frac{x-a}{m-a})^{n-1}, a<x\le m \\ \frac{n}{b-a}(\frac{b-x}{b-m})^{n-1}, m\le x<b \end{cases} \!\]
  • Extreme value\[ f(x)=(\beta/\alpha)e^{x\beta-e^{x\beta}/\alpha}. -\infty<x<\infty \!\]
  • Lomax\[ f(x)=\frac{\lambda \kappa}{(1+\lambda x)^{\kappa+1}}. x>0 \!\]
  • von Mises\[ f(x)=\frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}. 0<x<2\pi, 0<\mu<2\pi) \!\]
  • Generalized Pareto\[ f(x)=(\gamma+\frac{\kappa}{x+\delta})(1+x/\delta)^{-\kappa}e^{-\gamma x}. x>0 \!\]
  • Triangular\[ f(x)=\begin{cases} \frac{2(x-a)}{(b-a)(m-a)}, a<x<m \\ \frac{2(b-x)}{(b-a)(b-m)}, m \le x<b \end{cases}. a<m<b> \infty \]
  • Standard Uniform to Log Logistic Transformation\[ \frac{1}{\lambda}(\frac{1-X}{X})^{1/k} \]
  • Standard Uniform to Standard Triangular Transformation\[ X_1 - X_2\]
  • Standard Uniform to Logistic Exponential Transformation\[ \frac{log[1+(\frac{X}{1-X})^{1/K}]}{\lambda} \]
  • Standard Uniform to Beta Transformation: If X has a standard uniform distribution, \( Y = 1 - X^{1/n} \ \) has a beta distribution
  • Beta to Standard Uniform Transformation\[ \beta = \gamma = 1 \]
  • Continuous Uniform to Standard Uniform Transformation\[ a = 0, b = 1 \ \]
  • Pareto to Exponential\[ log(X/\lambda) \ \]
  • Logistic Exponential to Exponential\[ \beta = 1 \ \]
  • Zipf to Discrete Uniform\[ a = 0, a = 1, b = n \ \]
  • Discrete Uniform to Rectangular\[ a = 0, b = n \ \]
  • Poisson to Normal\[ \sigma ^2 = \mu , \mu \to \infty \]
  • Binomial to Poisson\[ \mu = np, \mu \to \infty \]
  • Gamma to Inverted Gamma\[ \frac{1}{X} \]
  • Fisher-Tippett to Gumbel\[ \mu = 0, \beta = 1 \ \]
  • Hypergeometric to Binomial\[ p = \frac{n_1}{n_3}, n = n_2, n_3, n \to \infty \ \]
  • Log-Normal to Normal\[ log(X) \ \]
  • Normal to Log-Normal\[e^X \ \]
  • Log-Normal to Gibrat's\[ \mu = 0, x = 1 \ \]
  • Cauchy to Standard Cauchy\[ \gamma = 1, x_0 = 0 \ \]
  • Standard Cauchy to Cauchy\[ x_0 + \gamma X \ \]
  • Standard Cauchy to Hyperbolic Secant\[ \frac{log|x|}{\pi} \ \]
  • Beta to Standard Power\[ \alpha=\beta, \beta=1 \ \]



Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif