AP Statistics Curriculum 2007 Fisher F

From SOCR
Revision as of 23:24, 6 July 2011 by JayZzz (talk | contribs)
Jump to: navigation, search

General Advance-Placement (AP) Statistics Curriculum - Fisher's F Distribution

Fisher's F Distribution

Commonly used as the null distribution of a test statistic, such as in analysis of variance (ANOVA). Relationship to the t-distribution and [beta Distribution].

PDF:
\(\frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!\)

CDF:
\(I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!\)

Mean:
\(\frac{d_2}{d_2-2}\!\) for \(d_2 > 2\)

Median:
None

Variance:
\(\frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!\) for \(d_2 > 4\)

Support:
\(x \in [0, +\infty)\!\)

Moment Generating Function
Does Not Exist

Applications

ANOVA

Example

We want to examine the effect of three different brands of gasoline on gas mileage using an alpha value of 0.05. We will have 6 observations for each of the 3 gasoline brands. Gas mileage figures are as follows:

Brand A Brand B Brand C
29 30 28
30 31 29
29 32 28
28 29 26
30 31 30
28 33 29

Our null hypothesis, \(H_0\), is that the three brands of gasoline will yield the same amount of gas mileage, on average.

First, we find the F-ratio:

Step 1: Calculate the mean for each brand:

Brand A\[\overline{Y}_1=\tfrac{29+30+29+28+30+28}{6} = 29\]

Brand B\[\overline{Y}_2\tfrac{30+31+32+29+31+33}{6} = 31\]

Brand C\[\overline{Y}_3\tfrac{28+29+28+26+30+29}{6} = 28\]


Step 2: Calculate the overall mean:

\(\overline{Y}=29+31+28=29.67\)

Step 3: Calculate the Between-Group Sum of Squares:

\( \begin{align} SS_b &= n(\overline{Y}_1-\overline{Y})^2+n(\overline{Y}_2-\overline{Y})^2+n(\overline{Y}_3-\overline{Y})^2\\ &= 6(29-29.67)^2+6(31-29.67)^2+6(28-29.67)^2=30.04 \end{align} \)

Where n is the number of observations per group.

The between-group degrees of freedom is one less than the number of groups: 3-1=2.

Therefore, the between-group mean square value, \(MS_B\), is \(\tfrac{30.04}{2}=15.02\)

Step 4: Calculate the Within-Group Sum of Squares:

We start by subtracting each observation by its group mean:

Brand A Brand B Brand C
29-29=0 30-31=-1 28-28=0
30-29=1 31-31=0 29-28=1
29-29=0 32-31=1 28-28=0
28-29=-1 29-31=-2 26-28=-2
30-29=1 31-31=0 30-28=2
28-29=-1 33-31=2 29-28=1

The Within-Group Sum of Squares, \(SS_w\), is the sum of the squares of the values in the previous table\[0+1+0+1+0+1+0+1+0+1+4+4+1+0+4+1+4+1=24\]

The Within-Group degrees of freedom is the number of groups times 1 less the number of observations per group\[3(6-1)=15\]

The Within-Group Mean Square Value, \(MS_W\) is\[\tfrac{24}{15}=1.6\]

Step 5: Finally, the F-Ratio is\[\tfrac{MS_B}{MS_W}=\tfrac{15.02}{1.6}=9.39\]

The F critical value is the value that the test statistic must exceed in order to reject the \(H_0\). In this case, \(F_crit(2,15)=3.68\) at \(\alpha=0.05\). Since F=9.39>3.68, we reject \(H_0\) at the 5% significance level, concluding that there is a difference in gas mileage between the gasoline brands.

We can find the critical F-value using the SOCR F Distribution Calculator:

F.png

SOCR Links

http://www.distributome.org/ -> SOCR -> Distributions -> Fisher’s F

http://www.distributome.org/ -> SOCR -> Distributions -> Fisher’s F Distribution

http://www.distributome.org/ -> SOCR -> Functors -> Fisher’s F Distribution

http://www.distributome.org/ -> SOCR -> Analyses -> ANOVA – One Way

http://www.distributome.org/ -> SOCR -> Analyses -> ANOVA – Two Way

SOCR F-Distribution Calculator (http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html)




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif