SMHS CLT LLN
Contents
Scientific Methods for Health Sciences - Limit Theory: Central Limit Theorem and Law of Large Numbers
Overview:
The two most commonly used theorems in the field of probability – Law of Large Numbers (LLT) and the Central Limit Theorem (CLT) – are commonly referred to as the first and second fundamental laws of probability. CLT suggests that the arithmetic mean of a sufficiently large number of iterates of independent random variables given certain conditions will be approximately normally distributed. LLT states that in performing the same experiment a large number of times, the average of the results obtained should be close to the expected value and tends to get closer to the expected value with increasing number of trials. In this section, we are going to introduce these two probability theorems and illustrate their applications with examples. Finally, we will show some common misconceptions of CLT and LLN.
Motivation:
Suppose we independently conduct one experiment repeatedly. Assume that we are interested in the relative frequency of the occurrence of one event whose probability to be observed at each experiment is p. The ratio of the observed frequency of that event to the total number of repetitions converges towards p as the number of (identical and independent) experiments increases. This is an informal statement of the Law of Large Numbers (LLN). Another important property comes with large sample size is the CLT. What would be the situation when the experiment is repeated with a sufficiently large number of iterations? Does it matter what the original distribution each individual outcome follow in this case? What would CLT tell us in situations like this and how can we apply this theorem to help us solve more complicated problems in researches?
Theory
LLN: that in performing the same experiment a large number of times, the average of the results obtained should be close to the expected value and tends to get closer to the expected value with increasing number of trials.
- It is generally necessary to draw the parallels between the formal LLN statements (in terms of sample averages) and the frequent interpretations of the LLN (in terms of probabilities of various events). Suppose we observe the same process independently multiple times. Assume a binarized (dichotomous) function of the outcome of each trial is of interest (e.g., failure may denote the event that the continuous voltage measure $< 0.5V$, and the complement, success, that voltage $≥ 0.5V,$ this is the situation in electronic chips which binarize electric currents to 0 or 1). Researchers are often interested in the event of observing a success at a given trial or the number of successes in an experiment consisting of multiple trials. Let’s denote $p=P(success)$ at each trial. Then, the ratio of the total number of successes to the number of trials $(n)$ is the average:
- SOCR Home page: http://www.socr.umich.edu
Translate this page: