SMHS SciVisualization

From SOCR
Revision as of 07:44, 8 April 2016 by Imoubara (talk | contribs)
Jump to: navigation, search

Questions

• How and why should we “look” at data?

• What data characteristics are important for exploratory data analytics (EDAs)?

Scientific Data-driven or Simulation-driven visualization methods may be classified in many alternative ways. Visualization techniques can be classified according to many criteria:

SMHS SciVisualization1.png

• Data Type: structured/unstructured, small/large, complete/incomplete, time/space, ascii/binary, Euclidean/non-Euclidean, etc.

• Task type: Task type is one of the aspects considered in classification of visualization techniques, which provides means of interaction between the researcher, the data and the display software/platform

• Scalability: Visualization techniques are subject to some limitations, such as the amount of data that a particular technique can exhibit

• Dimensionality: Visualization techniques can also be classified according to the number of attributes

• Positioning and Attributes: the distribution of attributes on the chart may affect the interpretation of the display representation, e.g., correlation analysis, where the relative distance among the plotted attributes is relevant for observation

• Investigative Need: the specific scientific question or exploratory interest may also determine the type of visualization:

o Examining the composition of the data

o Exploring the distribution of the data

o Contrasting or comparing several data elements, relations, association

o Unsupervised exploratory data mining

http://www.socr.umich.edu/CSCD/html/Cores/Macore2/SciViz.html

SOCR Charts

• URL: http://socr.umich.edu/html/cha/ (Java applet)

• About/List: http://wiki.stat.ucla.edu/socr/index.php/About_pages_for_SOCR_Chart_List

• Activities: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_ChartsActivities

• Data: http://wiki.socr.umich.edu/index.php/SOCR_Data

SMHS SciVisualization2.png

Excel Charts

MS Excel provides a large number of charts that can be used to quickly and effectively render complex multivariate data. For instance, the table below contains the principal component analysis (PCA) of 50 derived neuroimaging biomarkers (region of interest (ROI) by shape morphometry metric). The loadings of these 50 variables on the top 5 (most significant) principal component directions are shown in the table. Experiment with effective visualizations of these data.

Hemi ROI measure ROI_Measure Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
L insular AvgMeanCurvature L_insular_cortex_AvgMeanCurvature 0.72 0 0.06 0.06 0
L insular ComputeArea L_insular_cortex_ComputeArea 0.77 0.06 0.04 0.01 0
L insular Volume L_insular_cortex_Volume 0.72 0.09 0.04 0.03 0.01
L insular ShapeIndex L_insular_cortex_ShapeIndex 0.46 0.06 0.01 0.02 0.01
L insular Curvedness L_insular_cortex_Curvedness 0.78 0 0.05 0.03 0.01
R insular AvgMeanCurvature R_insular_cortex_AvgMeanCurvature 0.79 0 0.03 0.08 0
R insular ComputeArea R_insular_cortex_ComputeArea 0.79 0.09 0.03 0.01 0
R insular Volume R_insular_cortex_Volume 0.73 0.11 0.03 0.03 0
R insular ShapeIndex R_insular_cortex_ShapeIndex 0.27 0.17 0 0.07 0
R insular Curvedness R_insular_cortex_Curvedness 0.84 0.02 0.03 0.01 0
L cingulate AvgMeanCurvature L_cingulate_gyrus_AvgMeanCurvature 0.72 0 0.05 0.02 0.02
L cingulate ComputeArea L_cingulate_gyrus_ComputeArea 0.74 0.05 0.06 0.04 0.01
L cingulate Volume L_cingulate_gyrus_Volume 0.69 0.08 0.05 0.05 0.01
L cingulate ShapeIndex L_cingulate_gyrus_ShapeIndex 0.53 0 0.05 0 0.03
L cingulate Curvedness L_cingulate_gyrus_Curvedness 0.7 0.01 0.05 0.04 0.03
R cingulate AvgMeanCurvature R_cingulate_gyrus_AvgMeanCurvature 0.6 0 0.02 0.03 0.01
R cingulate ComputeArea R_cingulate_gyrus_ComputeArea 0.73 0.06 0.04 0.03 0.01
R cingulate Volume R_cingulate_gyrus_Volume 0.68 0.09 0.04 0.04 0.01
R cingulate ShapeIndex R_cingulate_gyrus_ShapeIndex 0.56 0.01 0.05 0 0.01
R cingulate Curvedness R_cingulate_gyrus_Curvedness 0.25 0 0.01 0.04 0
L caudate AvgMeanCurvature L_caudate_AvgMeanCurvature 0.52 0 0.05 0 0.01
L caudate ComputeArea L_caudate_ComputeArea 0.51 0.09 0.03 0.04 0.02
L caudate Volume L_caudate_Volume 0.44 0.09 0.03 0.06 0.03
L caudate ShapeIndex L_caudate_ShapeIndex 0.2 0.03 0.04 0.04 0
L caudate Curvedness L_caudate_Curvedness 0.51 0.12 0.02 0.01 0.01
R caudate AvgMeanCurvature R_caudate_AvgMeanCurvature 0.68 0.04 0.04 0.02 0
R caudate ComputeArea R_caudate_ComputeArea 0.67 0.17 0.03 0.02 0.01
R caudate Volume R_caudate_Volume 0.61 0.16 0.02 0.03 0.01
R caudate ShapeIndex R_caudate_ShapeIndex 0.18 0.02 0.03 0.11 0
R caudate Curvedness R_caudate_Curvedness 0.65 0.19 0.01 0 0
L putamen AvgMeanCurvature L_putamen_AvgMeanCurvature 0.62 0 0.04 0.03 0.02
L putamen ComputeArea L_putamen_ComputeArea 0.56 0.05 0.04 0.03 0.05
L putamen Volume L_putamen_Volume 0.52 0.07 0.04 0.05 0.05
L putamen ShapeIndex L_putamen_ShapeIndex 0.06 0.13 0 0.15 0
L putamen Curvedness L_putamen_Curvedness 0.64 0.11 0.03 0.01 0.03
R putamen AvgMeanCurvature R_putamen_AvgMeanCurvature 0.62 0 0.07 0.04 0.01
R putamen ComputeArea R_putamen_ComputeArea 0.66 0.08 0.03 0.01 0.03
R putamen Volume R_putamen_Volume 0.64 0.12 0.03 0.02 0.03
R putamen ShapeIndex R_putamen_ShapeIndex 0.15 0.24 0 0.08 0.03
R putamen Curvedness R_putamen_Curvedness 0.65 0.05 0.05 0 0.02
L hippocampus AvgMeanCurvature L_hippocampus_AvgMeanCurvature 0.78 0 0.01 0.04 0
L hippocampus ComputeArea L_hippocampus_ComputeArea 0.75 0.07 0.01 0 0.02
L hippocampus Volume L_hippocampus_Volume 0.72 0.09 0.01 0.01 0.01
L hippocampus ShapeIndex L_hippocampus_ShapeIndex 0.45 0.17 0 0.04 0.02
L hippocampus Curvedness L_hippocampus_Curvedness 0.79 0.03 0.01 0 0.02
R hippocampus AvgMeanCurvature R_hippocampus_AvgMeanCurvature 0.72 0 0 0.1 0.01
R hippocampus ComputeArea R_hippocampus_ComputeArea 0.71 0.09 0 0 0.05
R hippocampus Volume R_hippocampus_Volume 0.68 0.1 0 0 0.04
R hippocampus ShapeIndex R_hippocampus_ShapeIndex 0.37 0.18 0 0.02 0.03
R hippocampus Curvedness R_hippocampus_Curvedness 0.77 0.03 0 0.02 0.04
SMHS SciVisualization3.png
SMHS SciVisualization4.png
SMHS SciVisualization5.png

R-Charts

There are 100’s of packages and 1,000 of different charts, plots and graphs that can be generated using R. Such interactive visualizations enable deeper exploration of data, models and results. JavaScript libraries, e.g., D3, provide advantages for data visualization as these involve HTML5 and are easily shareable online. The R community is developing R interfaces to some popular JavaScript libraries to allow users to create interactive visualizations without detailed knowledge of JavaScript.

Examples of powerful R interactive visualization packages

ggplot2http://ggplot2.org

ggvis – interactive plots extending the static ggplot2 charts, http://ggvis.rstudio.com

rCharts – R interface to multiple JavaScript charting libraries, http://rcharts.io

plotly – transforming ggplot2 charts into interactive plots, https://plot.ly/r

googleVis – Google Charts using R, http://cran.r-project.org/web/packages/googleVis/vignettes/googleVis_examples.html

HTMLWidgets

o leaflet – library for creating dynamic maps, supports panning and zooming, annotations, markers, polygons, etc. http://www.htmlwidgets.org/showcase_leaflet.html

o dygraphs – provides mechanism for charting time-series data, supports interactive navigation features including series/point highlighting, zooming, and panning, http://www.htmlwidgets.org/showcase_dygraphs.html

o networkD3 – library for creating D3 network graphs including force directed networks, Sankey diagrams, and Reingold-Tilford tree networks, http://www.htmlwidgets.org/showcase_networkD3.html

o DataTables – displays R matrices or data frames as interactive HTML tables that support filtering, pagination, and sorting, http://www.htmlwidgets.org/showcase_datatables.html

o Rthreejs – features 3D scatterplots and globes based on WebGL, http://www.htmlwidgets.org/showcase_threejs.html

• Other R graphic examples

o To write out plots out to file use:

# pdf() command all graphs are redirected to test.pdf.  Also works with other common formats:  jpeg, png, ps, tiff.
pdf("C:\\Users\\Dinov\\Desktop\\test.pdf"); plot(1:100, 1:100); dev.off()
# Generates Scalable Vector Graphics (SVG) that can be edited by vector graphics software
svg("test.svg"); plot(1:100, 1:100); dev.off()

Paired ScatterPlots

set.seed(100)
x <- matrix(runif(50), ncol=5, dimnames=list(letters[1:10], LETTERS[1:5]))
describe(x)    # library("Hmisc")
plot(x[,1], x[,2], pch=20, col="red", main="Symbols and Labels")
text(x[,1]+0.03, x[,2], rownames(x))
SMHS SciVisualization6.png
pairs(x)
SMHS SciVisualization7.png

Another way to generate scatterplots is by using ggplot:

# library(ggplot2)
x <- sample(1:20, 20); y <- sample(1:20, 20); cat <- rep(c("A", "B", "C", "D"), 5)  
#vs. cat <- rep(c("A", "B", "C", "D"), each=5)
plot.1 <- qplot(x, y, geom="point", size=5*x, color=cat, main="GGplot with Relative Dot Size and Color") + theme(legend.position = "topleft")
print(plot.1)
# Use Case-Studies: https://umich.instructure.com/courses/38100/files/folder/Case_Studies
#  Case_03_MentalHealthServicesSurvey
# data1 <- read.table('https://umich.instructure.com/files/399128/download?download_frd=1&verifier=AG2e9QUKUm1jvDBpkX7D9jbEjKNc4irA0ECk0f7p', header=T)	
head(data1)
attach(data1)
# library("Hmisc")
describe(data1)
plot(data1[,3], data1[,4], pch=20, col="red", main="Symbols and Labels")
# text(data1 [,3]+0.03, data1 [,4], rownames(data1))
plot.1 <- qplot(x, y, geom="point", size=5*x, color=cat, main="GGplot with Relative Dot Size and Color") + theme(legend.position = "topleft")
print(plot.1)
# redo plots using majorfundtype FacilityType Ownership Focus
# pairs(data1, na.action=na.omit)
SMHS SciVisualization8.png
# Scatterplot with regression line. Use the “diamonds” dataset, which is a data frame with
# 53,940 rows and 10 variables ()
# describe(diamonds)
# Use Case-Studies: https://umich.instructure.com/courses/38100/files/folder/Case_Studies
# CaseStudy01_Divorce_YoungAdults
# data1 <- read.csv('https://umich.instructure.com/files/399118/download?download_frd=1&verifier=ESACv31KcyiHbkPZPuT8Oo4V7XzPtgTTbs6PQLTv', header=T)	
attach(data1)
# plot variables: DIVYEAR momint dadint momclose depression livewithmom gethitched
set.seed(110)
# par(mfrow=c(1,2))
data.2 <- diamonds[sample(nrow(diamonds), 500), ]
plot.2 <- qplot(price, depth, data = data.2, geom = c("point", "smooth"), method = "lm")
plot.3 <- qplot(carat, price, data=data.2, geom=c("point", "smooth"), span=0.4)
print(plot.2); print(plot.3)
SMHS SciVisualization9.png
SMHS SciVisualization10.png


Barplots

x <- matrix(runif(50), ncol=5, dimnames=list(letters[1:10], LETTERS[1:5]))
barplot(x[1:4,], ylim=c(0, max(x[1:4,])+0.3), beside=TRUE, legend.text = letters[1:4],
       args.legend = list(x = "topleft"))
text(labels=round(as.vector(as.matrix(x[1:4,])),2), x=seq(1.5, 21, by=1) + sort(rep(c(0,1,2,3,4), 4)), y=as.vector(as.matrix(x[1:4,]))+0.1)
SMHS SciVisualization11.png
# to put error bars on barplot:
# 10 rows (a, b, c, …):
bar <- barplot(m <- rowMeans(x) * 10, ylim=c(0, 10))
stdev <- sd(t(x))
arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)


# Case_04_ChildTrauma
# data1 <- read.table('https://umich.instructure.com/files/399129/download?download_frd=1&verifier=Hmv0YW2Kie5ZTV9CKBUNArSHR66f3GWSmVzZDBxc', header=T)	
attach(data1)
head(x)
head(data1)
# plot data
data2 <- data1[,-5]   # remove the 5th columns text
data1 <- data2[,-5]   # remove the 6th columns text
# or data1 <- data1[,c(-5,-6)]
data2 <- as.data.frame(data1)
Blacks <- data2[which(data2$\$$race=="black"),]
 Other <- data2[which(data2$\$$race=="other"),]
Hispanic <- data2[which(data2$\$$race=="hispanic"),]
 White <- data2[which(data2$\$$race=="white"),]
A <- c(mean(Blacks$\$$age), mean(Blacks$\$$service))
#colnames(A) <- c("age "," service ")  
B <- c(mean(Other$\$$age), mean(Other$\$$service))
C <- c(mean(Hispanic$\$$age), mean(Hispanic$\$$service))
D <- c(mean(White$\$$age), mean(White$\$$service))
x <- cbind(A, B, C, D)
bar <- barplot(x[1:2,], ylim=c(0, max(x[1:2,])+2.0), beside=TRUE, 
legend.text = c("age","service") ,  args.legend = list(x = "right"))
text(labels=round(as.vector(as.matrix(x[1:2,])),2), x=seq(1.4, 21, by=1.5), #y=as.vector(as.matrix(x[1:2,]))+0.3)

y=11.5)

m <- x; stdev <- sd(t(x))
arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)


barplot(as.matrix(data1[1:4,]), ylim=c(0, max(data1[1:4,])+0.3), beside=TRUE, legend.text = data1[1:4,1], args.legend = list(x = "topleft"))
text(labels=round(as.vector(as.matrix(data1[1:4,])),2), x=seq(1.5, 21, by=1), y=as.vector(as.matrix(data1[1:4,]))+0.1)
SMHS SciVisualization12.png
# Columns (A, B, C, D, E):
bar <- barplot(m <- colMeans(x) * 5, ylim=c(0, 5))
stdev <- sd(t(x))
arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)
SMHS SciVisualization13.png

Histograms and Density Plots

hist(x, freq=TRUE, breaks=10)
SMHS SciVisualization14.png
plot(density(x), lwd = 10, col="green")
SMHS SciVisualization15.png

Pie Chart

# first , “A”, and second, “B”, columns
par (mfrow=c(1,2))
pie(x[,1], col=rainbow(length(x[,1]), start=0.1, end=0.8), clockwise=TRUE)
pie(x[,1], col=rainbow(length(x[,1]), start=0.1, end=0.8), clockwise=TRUE)
pie(x[,2], col=rainbow(length(x[,2]), start=0.1, end=0.8), clockwise=TRUE)
legend("topleft", legend=row.names(x), cex=1.3, bty="n", pch=15, pt.cex=1.8, col=rainbow(length(x[,2]), start=0.1, end=0.8), ncol=1)
SMHS SciVisualization16.png
You can export the data: 
write.table(x, " ", "data.txt")
# copy-paste it in SOCR Pie chart to generate another Pie view of data

Line Plots Using ggplot

head(diamonds)
Carat Cut Color Clarity Depth Table Price X Y Z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 237 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 4.75
6 0.24 VeryGood J VVS2 62.8 57 336 3.94 3.96 2.48
plot.2 <- ggplot(diamonds, aes(carat, price, group=cut, color=cut)) + geom_line()
print(plot.2)
SMHS SciVisualization17.png
plot.2 <- ggplot(data1, aes(age, service, group=race, color=race)) + geom_line()
print(plot.2)


# Faceting plot (geometrically, faceting (or facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices)
plot.3 <- ggplot(diamonds, aes(carat, price)) + geom_line(aes(color=cut), size=1) + 
facet_wrap(~cut, ncol=1)
print(plot.3)
SMHS SciVisualization18.png

Barplots with ggplot

plot.4 <- ggplot(diamonds, aes(cut, fill=cut)) + geom_bar() + facet_grid(. ~ clarity)
print(plot.4)
SMHS SciVisualization19.png
New_var <- service+rnorm(1000, 0,1)
data1$\$$New_var <- int(New_var)
 plot.4 <- ggplot(data1, aes(race, fill= traumatype)) + geom_bar() + facet_grid(. ~ New_var)
 print(plot.4)


 plot.4a <- ggplot(diamonds, aes(color, price/carat, fill=color)) + geom_boxplot()
 print(plot.4a)

<center>[[Image:SMHS_SciVisualization20.png|500px]] </center>

==='"`UNIQ--h-9--QINU`"'Jitter plot===

 plot.5 <- ggplot(diamonds, aes(color, price/carat)) + geom_jitter(alpha = I(1 / 2), aes(color=color))
 print(plot.5)

<center>[[Image:SMHS_SciVisualization21.png|500px]] </center>

==='"`UNIQ--h-10--QINU`"'Density Plots===

 plot.6 <- ggplot(diamonds, aes(carat, size=2)) + geom_density(aes(color = cut))
 print(plot.6)

<center>[[Image:SMHS_SciVisualization22.png|500px]] </center>

 plot.6 <- ggplot(data1, aes(age, size=2)) + geom_density(aes(color = traumatype))
 print(plot.6)

 plot.7 <- ggplot(diamonds, aes(carat, size=2)) + geom_density(aes(fill = color))
 print(plot.7)

<center>[[Image:SMHS_SciVisualization23.png|500px]] </center>

 plot.8 <- ggplot(diamonds, aes(x=carat, size=1)) + geom_histogram(aes(y = price), binwidth=0.2) + geom_density()
 print(plot.8)

<center>[[Image:SMHS_SciVisualization24.png|500px]] </center>

 plot.8a <- ggplot(diamonds, aes(x=carat, size=1)) + geom_histogram(aes(y = price), stat="identity") + geom_density()
 print(plot.8a)

<center>[[Image:SMHS_SciVisualization25.png|500px]] </center>

==='"`UNIQ--h-11--QINU`"'Heatmaps===

 # Generating Dendogram Association Heatmap Plot (Genotype vs. Imaging phenotype
 # http://stat.ethz.ch/R-manual/R-patched/library/stats/html/heatmap.html
 # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005931/ 
	   
 AD_Associations_Data <- read.table("https://umich.instructure.com/files/330387/download?download_frd=1&verifier=gLk2ADgrLhXGeknI6mqIeJugi2ODr8RARsQlBUMe", header=TRUE, row.names=1,  sep=",", dec=".")	   

 MCI_Associations_Data <- read.table("https://umich.instructure.com/files/330390/download?download_frd=1&verifier=FczlJD6ISRPZhu69xvHuoZHx2c7gXX9YEvvPCTBG", header=TRUE, row.names=1,  sep=",", dec=".")	   	   

 NC_Associations_Data <- read.table("https://umich.instructure.com/files/330391/download?download_frd=1&verifier=i2BEtSpmpbrzQUPoA2ST06IzzcaenyVEHRepHSF3", header=TRUE, row.names=1,  sep=",", dec=".")	   	   

 require(graphics)
 require(grDevices)
 library(gplots)

 AD_Data <- AD_Associations_Data 
 MCI_Data <- MCI_Associations_Data 
 NC_Data <- NC_Associations_Data 

 AD_mat  <- as.matrix(AD_Data); class(AD_mat) <- "numeric"
 MCI_mat  <- as.matrix(MCI_Data); class(MCI_mat) <- "numeric"
 NC_mat  <- as.matrix(NC_Data); class(NC_mat) <- "numeric"

 # set up the rol (rc) and column (cc) colors for each cohort
 rcAD <- rainbow(nrow(AD_mat), start = 0, end = 1.0); ccAD<-rainbow(ncol(AD_mat), start = 0, end = 1.0)
 rcMCI <- rainbow(nrow(MCI_mat), start = 0, end=1.0); ccMCI<-rainbow(ncol(MCI_mat),start=0,end=1.0)
 rcNC <- rainbow(nrow(NC_mat), start = 0, end = 1.0); ccNC<-rainbow(ncol(NC_mat), start = 0, end = 1.0)

 # set up 1x3 graph display - par (mfrow=c(1,3)) – does not work with ‘heatmap’
 hvAD <- heatmap(AD_mat, col = cm.colors(256), scale = "column", RowSideColors = rcAD, ColSideColors = ccAD, margins = c(2,2), main="AD Cohort SNP-ROI_volume Association (p_values)")
 hvMCI <- heatmap(MCI_mat, col = cm.colors(256), scale = "column", RowSideColors = rcMCI, ColSideColors = ccMCI, margins = c(2,2), main="MCI Cohort SNP-ROI_volume Association (p_values)")
 hvNC <- heatmap(NC_mat, col = cm.colors(256), scale = "column", RowSideColors = rcNC, ColSideColors = ccNC, margins = c(2,2), main="NC Cohort SNP-ROI_volume Association (p_values)")

<center>[[Image:SMHS_SciVisualization26.png|500px]] </center>

 # Alternatively, we can use the R package gplots
 install.packages("gplots")
 library(gplots)
 ## col dendrogram plotted and col reordering done. 
 # heatmap.2(AD_mat, keysize=2) 
 ## A more decorative heatmap, with z-score scaling along columns 
 heatmap.2(AD_mat, col=cm.colors(255), scale="column", RowSideColors=rcAD, ColSideColors=ccAD, margin=c(8, 7), xlab="Imaging Biomarkers (ROI volume)", ylab= "Genetics Biomarkers (SNPs)", main="AD Associations Heatmap (SNP-Imaging)",     tracecol="green", density="density")

<center>[[Image:SMHS_SciVisualization27.png|500px]] </center>

==='"`UNIQ--h-12--QINU`"'Correlation Plots===

 The <b>corrplot</b> package is a graphical display of a correlation matrix, and confidence intervals, with some tools for matrix reordering. There are seven visualization methods (parameter method) in corrplot package, named   "circle", "square", "ellipse", "number", "shade", "color", "pie".
 # install.packages("corrplot")
 library(corrplot)
 NC_Associations_Data <- read.table("https://umich.instructure.com/files/330391/download?download_frd=1&verifier=i2BEtSpmpbrzQUPoA2ST06IzzcaenyVEHRepHSF3", header=TRUE, row.names=1,  sep=",", dec=".")	   
 M <- cor(NC_Associations_Data)

<center>[[Image:SMHS_SciVisualization28.png|500px]] </center>

==='"`UNIQ--h-13--QINU`"'Hyperbolic Visualization===

•	URL: http://socr.umich.edu/html/Navigators.html  

•	Tools:

<blockquote>o	Java/Jar applet: http://socr.umich.edu/html/navigators/HW/jars/SOCR_HW_Viewer.jar</blockquote>

<blockquote>o	JavaScript: http://socr.umich.edu/html/navigators/D3/SOCR_D3_Viewer.html (JSON)</blockquote>

•	Data Format

<blockquote>o	XML data: http://socr.umich.edu/html/navigators/HW/SOCR_HyperTree.xml</blockquote>

<blockquote>o	JSON data: http://socr.umich.edu/html/navigators/D3/xml/SOCR_HyperTree.json</blockquote> 

•	D3 Visualization

<blockquote>o	E:\Ivo.dir\Research\UMichigan\Education_Teaching_Curricula\2015_2016\HS_853_Fall_2015\Modules_docx\Tools\TreeViewer_JS</blockquote>

<blockquote>	treeJS.json</blockquote>

<blockquote>	flareD3.json</blockquote>

<center>[[Image:SMHS_SciVisualization29.png|500px]] </center>

<center>[[Image:SMHS_SciVisualization30.png|500px]] </center>

•	URL: https://github.com/mbostock/d3/wiki/Gallery

•	Source code: https://github.com/mbostock/d3

<center>[[Image:SMHS_SciVisualization31.png|500px]] </center>

==='"`UNIQ--h-14--QINU`"'Motion Charts===

•	Video: http://www.socr.ucla.edu/SOCR_MotionCharts/SOCR_HTML5_MotionChart_Video2.gif

•	Java: http://www.socr.ucla.edu/SOCR_MotionCharts/ 

•	HTML5: http://socr.umich.edu/HTML5/MotionChart/ 

•	Activities: http://wiki.socr.umich.edu/index.php/SOCR_MotionCharts 


<center>[[Image:SMHS_SciVisualization32.png|500px]] </center>

==='"`UNIQ--h-15--QINU`"'1D/2D/3D signal/area/volume/surface/model/atlas visualization===

• 1D: (See R/SOCR Visualization tools above)

• 2D: http://imagej.nih.gov/ij/ 

• 3D: http://socr.umich.edu/HTML5/BrainViewer/ 

 <b>Supported File Formats:</b>
 Volumes (.nii / .nii.gz / .img&.hdr / .mgh / .mgz / .nrrd)
 Shapes (.dx / .vtk / .stl / FreeSurfer)
 Fibers (.trk)

<center>[[Image:SMHS_SciVisualization33.png|500px]] </center>

==='"`UNIQ--h-16--QINU`"'Trees and Graphs===

• Trees/Hierarchies and general Graphs

 # Install and load the APE package, needed for the phylogenetic tree rendering (as.phylo)
 # install.packages("ape")
 library("ape")

Load data 

 # Data: 02_Nof1_Data.csv
 data.1 <- read.table("https://umich.instructure.com/files/330385/download?download_frd=1&verifier=DwJUGSd6t24dvK7uYmzA2aDyzlmsohyaK6P7jK0Q ", sep=",", header = TRUE)
 head(data.1)

<center>
{| class="wikitable" style="text-align:center; width:35%" border="1"
|-
mydata1
|-		
|||ID||Day||Tx||SelfEff||SelfEff25||WPSS||SocSuppt||PMss||PMss3||PhyAct
|-
|1||1||1||1||33||8||0.97||5.00||4.03||1.03||53
|-
|2||1||2||1||33||8||-0.17||3.87||4.03||1.03||73
|-
|3||1||3||0||33||8||0.81||4.84||4.03||1.03||23
|-
|4||1||4||0||33||8||-0.41||3.62||4.03||1.03||36
|-
|5||1||5||1||33||8||0.59||4.62||4.03||1.03||21
|-
|6||1||6||1||33||8||-1.16||2.87||4.03||1.03||0

|}
</center>


Clustering

 hc = hclust(dist(data.1), 'ave') 
 # the agglomeration method can be specified "ward.D", "ward.D2", "single","complete", "average" (= UPGMA), "mcquitty" (= WPGMA),"median" (= WPGMC) or "centroid" (= UPGMC)

 # (3) Plot clustering diagram
 par (mfrow=c(1,1))
 # very simple dendrogram
 plot(hc)

<center>[[Image:SMHS_SciVisualization34.png|500px]] </center>

 require(graphics)
 (x <- identify(hc)) ##  Terminate with 2nd mouse button !!
 identify(hc, <mark>function(k)</mark> print(table(data.1[k,5])))

You can now cut the tree into branches. You can split the tree into 2 groups, by setting the number of cuts with the k=2 parameter, or by specifying height to cut the tree at (?cutree):

 k	an integer scalar or vector with the desired number of groups
 h	numeric scalar or vector with heights where the tree should be cut

 cutree(hc, k = 2)
 # alternatively specify the height, which is, the value of the criterion associated with the clustering method 
 # for the particular agglomeration.
 cutree(hc, h= 50) # cut at h=50
 table(cutree(hc, h= 50)) # cluster distribution
 # To identify the number of cases for varying number of clusters we can combine calls to cutree and table 
 # in a call to <b>sapply</b> -- to see the sizes of the clusters for 2≤ k≤10 cluster-solutions:
 # numbClusters=5; 
 myClusters = sapply(2:10,function(numbClusters)table(cutree(hc, numbClusters)))
 names(myClusters) <- paste("Number of Clusters=", 2:10, sep = "")
 myClusters
 #To see which SubjectIDs are in which clusters:
 groups.10 <- cutree(hc, k = 10)	
 sapply(unique(groups.10),function(g)data.1$\$$ID[groups.10 == g])
#To see which Treatments (Tx) are in which clusters:
groups.2 <- cutree(hc, k = 2)
sapply(unique(groups.2),function(g)data.1$\$$Tx[groups.2 == g])
 # drill down deeper
 table(groups.2, data.1$\$$Tx)
# For a small number of observations, we can often interpret the cluster solution directly by looking 
# at the labels of the observations that are in each cluster. 
# This is hard for larger data sets. To characterize clusters we can look at cluster summary statistics, 
# like the median, of the variables that were used to perform the cluster analysis broken down 
# by the groups that the cluster analysis identified. 

The aggregate function will compute stats (e.g., median) on many variables simultaneously.

To look at the median values for the variables we've used in the cluster analysis, broken up by the cluster groups:

aggregate(data.1, list(groups.10),median) # may have to shrink data.1 prior to clustering! 
# data.2 <- data.1[,-c(1,3)]  # Remove ID and Tx variables?
aggregate(data.2, list(groups.2),median) # for only 2 clusters
Group ID Day Tx SelfEff SelfEff25 WPSS SocSuppt PMss PMss3 PhyAct
1 1 14 16 0 20 -5 -0.040 2.995 3.275 0.275 41
2 2 16 15 1 25 0 0.025 3.280 3.360 0.360 104
table(groups.2, data.1$\$$<u><b>PhyAct</b></u>)

 # library("Hmisc")

 describe(data.1$\$$PhyAct)
# It’s useful to add the numbers of observations in each group (aggregate returns a data frame, 
# that can be manipulated)
df.2 <- aggregate(data.1, list(groups.2),median)
data.frame(Cluster= df.2[,1], Freq=as.vector(table(groups.2)), df.2[,-1])
Cluster Freq ID Day Tx SelfEff SelfEff25 WPSS SocSuppt PMss PMss3 PhyAct
1 1 570 14 16 0 20 -5 -0.040 2.995 3.275 0.275 41
2 2 330 16 15 1 25 0 0.025 3.280 3.360 0.360 104

Publications

• This paper examines nasal and bronchial tissue cultures as appropriate in vitro models for the assessment of smoking-induced adverse effects in the respiratory system (doi: 10.1177/1091581814551647), using “hclust” package. No data.

• This paper classified subtypes of gastric cancer based on epidemiologic and histologic and gene expression data. These new classifications of gastric cancer have implications for improving our understanding of disease biology and identification of unique molecular drivers for each gastric cancer subtype (doi: 10.1158/1078-0432.CCR-10-2203).

Repeat the clustering

# using centroids and squared Euclidean distance
# cut the tree into 10 clusters and reconstruct the upper part of the tree from the cluster centers.
hc <- hclust(dist(data.1), "cen")
mem <- cutree(hc, k = 10)
cent <- NULL
for(k in 1:10){
 		cent <- rbind(cent, colMeans(data.1[mem == k, , drop = FALSE]))
}
hc1 <- hclust(dist(cent), method = "cen", members = table(mem))
opar <- par(mfrow = c(1, 2))
plot(hc,  labels = FALSE, hang = -1, main = "Original Tree")
plot(hc1, hang = -1, main = "Re-start from 10 clusters")
par(opar)
SMHS SciVisualization35.png

Identify subjects within each of the 10 classes

rect.hclust(hc, h=10) 
# To save the cluster numbers to a new variable in the dataset, use the cutree function.
# data.1$\$$clusterID <- cutree(hc, 10)
 data.1$\$$clusterID <- cutree(hc, 10)
head(data.1)
ID Day Tx SelfEff SelfEff25 WPSS SocSuppt PMss PMss3 PhyAct CluserID
1 1 1 1 33 8 0.97 5.00 4.03 1.03 53 1
2 1 2 1 33 8 -0.17 3.87 4.03 1.03 73 1
3 1 3 0 33 8 0.81 4.84 4.03 1.03 23 2
4 1 4 0 33 8 -0.41 3.62 4.03 1.03 36 2
5 1 5 1 33 8 0.59 4.62 4.03 1.03 21 2
6 1 6 1 33 8 -1.16 2.87 4.03 1.03 0 2

Phylogenetic tree diagram

# library("ape")
plot(as.phylo(hc1), use.edge.length = TRUE, type = "fan")
plot(as.phylo(hc), use.edge.length = TRUE, type = "fan", tip.color = hsv(runif(15, 0.65, 0.95), 1, 1, 0.7), label.offset = 1, cex = log(data.1$\$$ID, 10), col = "red")

<center>[[Image:SMHS_SciVisualization36.png|500px]] </center>

<center>[[Image:SMHS_SciVisualization37.png|500px]] </center>

<b>Hands-on Activity (Health Behavior Risks)</b>

 # load data CaseStudy09_HealthBehaviorRisks_Data
 data.2 <- read.csv("https://umich.instructure.com/files/399182/download?download_frd=1 ", sep=",", header = TRUE)

 # Classify the cases using these variables:  "AGE_G"    "SEX"      "RACEGR3"  "IMPEDUC"  "IMPMRTL"  
 #	"EMPLOY1"  "INCOMG"  "CVDINFR4" "CVDCRHD4" "CVDSTRK3" "DIABETE3" "RFSMOK3"  
 #	"FRTLT1"   "VEGLT1" 
 data.raw <- data.2[,-c(1,14,17)]

 # Does the classification match either of these: 
 #	TOTINDA (Leisure time physical activities per month, 1=Yes, 2=No, 9=Don’t know/Refused/Missing)
 #	RFDRHV4 (Heavy alcohol consumption, 1=No, 2=Yes, 9=Don’t know/Refused/Missing)


 hc = hclust(dist(data.raw), 'ave') 
 # the agglomeration method can be specified "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC)

 # (3) Plot clustering diagram
 par (mfrow=c(1,1))
 # very simple dendrogram
 plot(hc)
 
 summary(data.2$\$$TOTINDA); summary(data.2$\$$RFDRHV4)

 cutree(hc, k = 2)
 # alternatively specify the height, which is, the value of the criterion associated with the 
 # clustering method for the particular agglomeration -- cutree(hc, h= 10)

 table(cutree(hc, h= 10)) # cluster distribution

 # To identify the number of cases for varying number of clusters we can combine calls to cutree and table 
 # in a call to sapply -- to see the sizes of the clusters for 2≤ k≤10 cluster-solutions:
 # numbClusters=4; 
 myClusters = sapply(2:5,function(numbClusters)table(cutree(hc, numbClusters)))
 names(myClusters) <- paste("Number of Clusters=", 2:5, sep = "")
 myClusters

 #To see which SubjectIDs are in which clusters:
 table(cutree(hc, k=2)) 
 groups.k.2 <- cutree(hc, k = 2)
 sapply(unique(groups.k.2),function(g)data.2$\$$ID[groups.k.2 == g])
#To see which TOTINDA (Leisure time physical activities per month, 1=Yes, 2=No, 9=Don’t 
# 	know/Refused/Missing) & whch RFDRHV4 are in which clusters:
groups.k.3 <- cutree(hc, k = 3)
sapply(unique(groups.k.3),function(g)data.2$\$$TOTINDA [groups.k.3 == g])
 sapply(unique(groups.k.3),function(g)data.2$\$$RFDRHV4[groups.k.3 == g])
# Perhaps there are intrinsically 3 groups here e.g., 1, 2 and 9 …
groups.k.3 <- cutree(hc, k = 3)
sapply(unique(groups.k.3),function(g)data.2$\$$TOTINDA [groups.k.3 == g])
 sapply(unique(groups.k.3),function(g)data.2$\$$RFDRHV4 [groups.k.3 == g])
# Note that there is quite a dependence between the outcome variables …
plot(data.2$\$$RFDRHV4, data.2$\$$TOTINDA)
# drill down deeper
table(groups.k.3, data.2$\$$RFDRHV4)

 # To characterize clusters we can look at cluster summary statistics, 
 # like the median, of the variables that were used to perform the cluster analysis broken down 
 # by the groups that the cluster analysis identified. The aggregate function will compute stats
 # (e.g., median) on many variables simultaneously. To look at the median values for the variables 
 # we've used in the cluster analysis, broken up by the cluster groups:
 aggregate(data.2, list(groups.k.3),median) 

==='"`UNIQ--h-18--QINU`"'Complex Network Visualization===

 # Install package
 # install.packages("igraph")
 library("igraph")

 # build a simple graph
 g <- graph( c(1,2, 1,3, 2,3, 3,4), n=10)
 plot(g)

 summary(g); g; is.igraph(g); is.directed(g); vcount(g); ecount(g)

<center>[[Image:SMHS_SciVisualization38.png|500px]] </center>

<center>[[Image:SMHS_SciVisualization39.png|500px]] </center>

 plot(g, layout=layout.circle)

 plot(g, layout=layout.fruchterman.reingold)
 plot(g, layout=layout.graphopt)
 plot(g, layout=layout.kamada.kawai, vertex.color="cyan")

 # Interactive
 tkplot(g, layout=layout.kamada.kawai)
 # 3D plot
 rglplot(g, layout=layout.kamada.kawai(g))

 # Dataset 1: Coappearance network in the novel “les miserablese”. 
 # D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing, Addison-Wesley, Reading, 
 # MA (1993).
 # The data contains the weighted network of coappearances of characters in Victor Hugo's novel "Les 
 # Miserables".  Nodes represent characters as indicated by the labels and edges connect any pair of
 # characters that appear in the same chapter of the book.  The values on the edges are the number of 
 # such coappearances.

 # Alternatively, we can use a directed, weighted network representing the neural network of the nematode 
 # C. Elegans. D. Watts and S. Strogatz, Nature 393, 440-442 (1998). The file celegansneural.gml describes a 
 # weighted, directed network where the nodes have been renumbered to be consecutive.
 #  Edge weights are the weights given by Watts.

 install.packages("rgl")
 library("igraph")

 g<-read.graph("C:\\Users\\Dinov\\Desktop\\celegansneural.gml",format=c("gml"))
 g
 plot(g, layout=layout.graphopt)

 data_g <- read.table("https://umich.instructure.com/files/330389/download?download_frd=1&verifier=u1jqCGS8AAU0MsO5ffLCyvVFYXXAflpdLtg8RXhk", sep=" ", header = FALSE)

 data_g_mat <- as.matrix(data_g, byrow=TRUE, nc=2)
 g_miserab <- graph.edgelist(data_g_mat, dir=FALSE)
 summary(g_miserab)
 plot(g_miserab, layout=layout.graphopt)
 # rglplot(g_miserab, layout=layout.kamada.kawai(g_miserab))

 # to name the vertices and and plot the graph  of the first 10 vertices
 V(g_miserab)$name
 g_miserab.1 <- graph.ring(10)
 V(g_miserab.1)$name <- sample(letters, vcount(g_miserab.1))
 plot(g_miserab.1, layout=layout.graphopt)

 # compute the node adjacency matrix
 g <- g_miserab; as_adjacency_matrix(g)
 E(g)$weight <- runif(ecount(g))
 W <- get.adjacency(g, attr="weight")
 W

<b>Social Network Analysis Example</b>

 # free memory
 # rm(list = ls())
 # gc()

 
 # load termDocMatrix dataset
 # These data include Twitter text data of @RDataMining representing a general social network analysis
 # example. The terms represent people and the tweets represent LinkedIn groups.
 # The term-document matrix can be viewed as the group membership of people. 
 # We may want to build a network of terms based on their co-occurrence in the same tweets,
 # similarly to a network of people based on their group membership.
 # https://umich.instructure.com/files/541336/download?download_frd=1 

load("E:\\Ivo.dir\\Research\\UMichigan\\Education_Teaching_Curricula\\2015_2016\\HS_853_Fall_2015\\Modules_docx\\data\\03_GraphNetwork_TermDocMatrix.rdata")

<center><b>Labeled graph</b> [[Image:SMHS_SciVisualization40.png|400px]] </center>

<center><b>Adjacency matrix</b> [[Image:SMHS_SciVisualization41.png|400px]] Coordinates are 1-6.</center>

 # inspect part of the matrix
 termDocMatrix [5:10,1:20]
 # change it to a Boolean matrix == incidence matrix
 termDocMatrix [termDocMatrix >=1] <- 1

 # transform into a term-term adjacency matrix (n×n), where (i,j)th entries correspond to the number of edges 
 # node from xi to node xj.
 # Matrix Multiplication in R: http://www.statmethods.net/advstats/matrix.html, dim(t(termDocMatrix))
 termMatrix <- termDocMatrix %*% t(termDocMatrix)

 # A graph has no loops, when all entries of the adjacency matrix on the main diagonal of are zeroes
 # http://mathonline.wikidot.com/adjacency-matrices 
 diag(termMatrix)

 # The matrix product of incidence matrix (B) and it’s transpose B×B^T represents the degrees of all nodes!
 # inspect terms numbered 5 to 10
 termMatrix[5:10,5:10]

 # library("igraph")
 # build a graph from the adjacency matrix
 g <- graph.adjacency(termMatrix, weighted=T, mode="undirected")
 plot(g)

 # remove loops 
 g <- simplify(g); plot(g)

 # set labels and degrees of  V(g)
 V(g)$\$$label <- V(g)$\$$name
 V(g)$\$$degree <- degree(g)
# set seed to make the layout reproducible
set.seed(1953)
layout1 <- layout.fruchterman.reingold(g)   # Fruchterman-Reingold layout
plot(g, layout=layout1)
# plot(g, layout=layout.kamada.kawai)
# tkplot(g, layout=layout.kamada.kawai)
SMHS SciVisualization42.png
# Finesse the graph appearance – vertices and edges
V(g)$\$$label.cex <- 2.2 * V(g)$\$$degree / max(V(g)$\$$degree)+ .2
 V(g)$\$$label.color <- rgb(0, 0, .2, .8)
V(g)$\$$frame.color <- rgb(0,0,1)
 egam <- (log(E(g)$\$$weight)+.4) / max(log(E(g)$\$$weight)+.4)
 E(g)$\$$color <- rgb(.5, .5, 0, egam)		# Graph Edges, E(g)
E(g)$\$$width <- egam
 # plot the graph in layout1
 plot(g, layout=layout1)

 V(g)$\$$label <- V(g)$\$$name
 V(g)$\$$label.color <- rgb(0, 0, 0, 0.5)
V(g)$\$$label.dist <- 1.0	# relative distance of labels from node center
 V(g)$\$$label.angle<- 3/8   #in radians
V(g)$\$$label.cex <- 1.4*V(g)$\$$degree/max(V(g)$\$$degree) + 1
 V(g)$\$$color <- rgb(1, 0, 0, .4)
V(g)$\$$size <- 22 * V(g)$\$$degree / max(V(g)$\$$degree)+ 2
 V(g)$\$$shape <- "rectangle"
# V(g)$\$$.size=10*(strwidth(V(g)$\$$label) + strwidth("oo")) * 10
# V(g)$\$$.size2=strheight("I") * 10
 V(g)$\$$frame.color <- NA
# set vertex labels and their colors and sizes
# set edge width and color
E(g)$\$$width <- .3	
 E(g)$\$$color <- rgb(.5, .5, 0, .3) 
set.seed(1234)
plot(g, layout=layout.fruchterman.reingold)
SMHS SciVisualization43.png