SMHS BigDataBigSci GCM

From SOCR
Revision as of 14:41, 5 May 2016 by Imoubara (talk | contribs)
Jump to: navigation, search

Model-based Analytics - Growth Curve Models

Latent growth curve models may be used to analyze longitudinal or temporal data where the outcome measure is assessed on multiple occasions, and we examine its change over time, e.g., the trajectory over time can be modeled as a linear or quadratic function. Random effects are used to capture individual differences by conveniently representing (continuous) latent variables, aka growth factors. To fit a linear growth model we may specify a model with two latent variables: a random intercept, and a random slope:

#load data   05_PPMI_top_UPDRS_Integrated_LongFormat.csv ( dim(myData) 661  71), wide 
# setwd("/dir/")
myData <- read.csv("https://umich.instructure.com/files/330395/download?download_frd=1&verifier=v6jBvV4x94ka3EYcGKuXXg5BZNaOLBVp0xkJih0H",header=TRUE)
attach(myData)
# dichotomize the "ResearchGroup" variable
table(myData$\$$ResearchGroup)
 myData$\$$ResearchGroup <- ifelse(myData$\$$ResearchGroup == "Control", 1, 0)
# linear growth model with 4 timepoints
# intercept (i) and slope (s) with fixed coefficients
# i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4 (intercept/constant)
# s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4  (slope/linear term)
# ??? =~ 0*t1 + 1*t2 + 2*t3 + 3*t4  (quadratic term)

In this model, we have fixed all the coefficients of the linear growth functions:

model4 <-
' 
i =~ 1*UPDRS_Part_I_Summary_Score_Baseline + 1*UPDRS_Part_I_Summary_Score_Month_03 + 
1*UPDRS_Part_I_Summary_Score_Month_06 + 1*UPDRS_Part_I_Summary_Score_Month_09 + 
1*UPDRS_Part_I_Summary_Score_Month_12 + 1*UPDRS_Part_I_Summary_Score_Month_18 + 
1*UPDRS_Part_I_Summary_Score_Month_24 + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_03 + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_06 + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_09 + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_12 + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_18 +
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_24 + 
1*UPDRS_Part_III_Summary_Score_Baseline + 1*UPDRS_Part_III_Summary_Score_Month_03 + 
1*UPDRS_Part_III_Summary_Score_Month_06 + 1*UPDRS_Part_III_Summary_Score_Month_09 + 
1*UPDRS_Part_III_Summary_Score_Month_12 + 1*UPDRS_Part_III_Summary_Score_Month_18 + 
1*UPDRS_Part_III_Summary_Score_Month_24 + 
1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Baseline + 
1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_06 + 
1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_12 + 
1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_24 + 
1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Baseline + 
1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_06 +
1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_12 + 
1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_24 
s =~ 0*UPDRS_Part_I_Summary_Score_Baseline + 1*UPDRS_Part_I_Summary_Score_Month_03 + 
2*UPDRS_Part_I_Summary_Score_Month_06 + 3*UPDRS_Part_I_Summary_Score_Month_09 + 
4*UPDRS_Part_I_Summary_Score_Month_12 + 5*UPDRS_Part_I_Summary_Score_Month_18 + 
6*UPDRS_Part_I_Summary_Score_Month_24 +
0*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline + 
1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_03 + 
2*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_06 + 
3*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_09 + 
4*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_12 + 
5*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_18 +         
6*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_24 + 
0*UPDRS_Part_III_Summary_Score_Baseline + 1*UPDRS_Part_III_Summary_Score_Month_03 + 
2*UPDRS_Part_III_Summary_Score_Month_06 + 3*UPDRS_Part_III_Summary_Score_Month_09 + 
4*UPDRS_Part_III_Summary_Score_Month_12 + 5*UPDRS_Part_III_Summary_Score_Month_18 + 
6*UPDRS_Part_III_Summary_Score_Month_24 + 
0*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Baseline + 
2*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_06 + 
4*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_12 +
6*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_24 +
0*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Baseline + 
2*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_06 + 
4*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_12 + 
6*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_24
'
fit4 <- growth(model4, data=myData)
summary(fit4)
parameterEstimates(fit4)	# extracts the values of the estimated parameters, the standard errors, 
# the z-values, the standardized parameter values, and returns a data frame	
fitted(fit4)	# return the model-implied (fitted) covariance matrix (and mean vector) of a fitted model


# resid() function return (unstandardized) residuals of a fitted model including the difference between 
# the observed and implied covariance matrix and mean vector
resid(fit4)

Measures of model quality (Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA))

# report the fit measures as a signature vector: Comparative Fit Index (CFI), Root Mean Square Error of 
# Approximation (RMSEA)
fitMeasures(fit4, c("cfi", "rmsea", "srmr"))

Comparative Fit Index (CFI) is an incremental measure directly based on the non-centrality measure. If d = χ2(df) where df are the degrees of freedom of the model, the Comparative Fit Index is:

FIX THIS!!!!!!!!!!!!!!!!(d(Null Model) - d(Proposed Model))/(d(Null Model)).

0≤CFI≤1 (by definition). It is interpreted as:

  • CFI<0.9 - model fitting is poor.
  • 0.9≤CFI≤0.95 is considered marginal,
  • CFI>0.95 is good.

CFI is a relative index of model fit – it compare the fit of your model to the fit of (the worst) fitting null model.

Root Mean Square Error of Approximation (RMSEA) - “Ramsey”

An absolute measure of fit based on the non-centrality parameter: FIX EQUATION!!!!>√((χ2 - df)/(df×(N - 1))) ,

where N the sample size and df the degrees of freedom of the model. If χ2 < df, then the RMSEA∶=0. It has a penalty for complexity via the chi square to df ratio. The RMSEA is a popular measure of model fit.

  • RMSEA < 0.01, excellent,
  • RMSEA < 0.05, good
  • RMSEA > 0.10 cutoff for poor fitting models

Standardized Root Mean Square Residual (SRMR) is an absolute measure of fit defined as the standardized difference between the observed correlation and the predicted correlation. A value of zero indicates perfect fit. The SRMR has no penalty for model complexity. SRMR <0.08 is considered a good fit.

# inspect the model results (report parameter table)
inspect(fit4)
#install.packages("semTools")
# library("semTools")

A Simpler Model (fit5)

model5 <- '
 # intercept and slope with fixed coefficients
i =~ UPDRS_Part_I_Summary_Score_Baseline + UPDRS_Part_I_Summary_Score_Month_03 + UPDRS_Part_I_Summary_Score_Month_24
s =~ 0*UPDRS_Part_I_Summary_Score_Baseline + 1*UPDRS_Part_I_Summary_Score_Month_03 + 6*UPDRS_Part_I_Summary_Score_Month_24
 # regressions
i ~  R_fusiform_gyrus_Volume + Weight + ResearchGroup + Age + chr12_rs34637584_GT                                                              
s ~ R_fusiform_gyrus_Volume + Weight + ResearchGroup + Age + chr12_rs34637584_GT
 # time-varying covariates
   UPDRS_Part_I_Summary_Score_Baseline ~ Weight
   UPDRS_Part_I_Summary_Score_Month_03  ~ ResearchGroup 
    UPDRS_Part_I_Summary_Score_Month_24 ~ Age
'
fit5 <- growth(model5, data=myData)
summary(fit5); fitMeasures(fit5, c("cfi", "rmsea", "srmr"))
parameterEstimates(fit5)	# extracts the values of the estimated parameters, the standard errors, 
# the z-values, the standardized parameter values, and returns a data frame
lavaan (0.5-18) converged normally after  99 iterations
 Number of observations                           661
 Estimator                                         ML
 Minimum Function Test Statistic                3.703
 Degrees of freedom                                 1
 P-value (Chi-square)                           0.054
Parameter estimates:
 Information                                 Expected
 Standard Errors                             Standard
                  Estimate  Std.err  Z-value  P(>|z|)
Latent variables:
 i =~
   UPDRS_P_I_S_S     1.000
   UPDRS_P_I_S_S     1.074
   UPDRS_P_I_S_S     1.172
 s =~
   UPDRS_P_I_S_S     0.000
   UPDRS_P_I_S_S     1.000
   UPDRS_P_I_S_S     6.000
Regressions:
 i ~
   R_fsfrm_gyr_V     0.000
   Weight            0.003
   ResearchGroup    -0.880
   Age              -0.009
   c12_34637584_    -0.907
 s ~
   R_fsfrm_gyr_V    -0.000
   Weight           -0.000
   ResearchGroup    -0.084
   Age               0.002
   c12_34637584_    -0.047
 UPDRS_Part_I_Summary_Score_Baseline ~
   Weight           -0.000
 UPDRS_Part_I_Summary_Score_Month_03 ~
   ResearchGroup     0.693
 UPDRS_Part_I_Summary_Score_Month_24 ~
   Age              -0.002
Covariances:
 i ~~
   s                 0.074
Intercepts:
   UPDRS_P_I_S_S     0.000
   UPDRS_P_I_S_S     0.000
   UPDRS_P_I_S_S     0.000
   i                 1.633
   s                -0.023
Variances:
   UPDRS_P_I_S_S     1.017
   UPDRS_P_I_S_S     1.093
   UPDRS_P_I_S_S     2.993
   i                 1.019
   s                -0.025
 cfi rmsea  srmr
0.996 0.064 0.008
fitted(fit5)	# return the model-implied (fitted) covariance matrix (and mean vector) of a fitted model
# write.table(fitted(fit5), file="C:\\Users\\Dinov\\Desktop\\test1.txt")
# resid() function return (unstandardized) residuals of a fitted model including the difference between 
# the observed and implied covariance matrix and mean vector
resid(fit5)
# report the fit measures as a signature vector
fitMeasures(fit5, c("cfi", "rmsea", "srmr"))   # comparative fit index (CFI)
# inspect the model results (report parameter table)
inspect(fit5)

Note: See discussion of SEM modeling pros/cons.

Generalized Estimating Equation (GEE) Modeling

Generalized Estimating Equations (GEE) modeling is used for analyzing data with the following characteristics: (1) the observations within a group may be correlated, (2) observations in separate clusters are independent, (3) a monotone transformation of the expectation is linearly related to the explanatory variables, and (4) the variance is a function of the expectation. The expectation (#3) and the variance (# 4) are conditional given group-level or individual-level covariates.

GEE is applied to handle correlated discrete and continuous outcome variables. For the outcome variables, it only requires specification of the first 2 moments and correlation among them. The goal is to estimate fixed parameters without specifying their joint distribution. The correlation is specified by one of these 4 alternatives (which is specified in the R call: geeglm(outcome ~ center + treat + sex + baseline + age, data = respiratory, family = "binomial", id = id, corstr = " exchangeable", scale.fix = TRUE):









See also




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif