SMHS BigDataBigSci GCM

From SOCR
Revision as of 08:34, 6 May 2016 by Imoubara (talk | contribs)
Jump to: navigation, search

Model-based Analytics - Growth Curve Models

Latent growth curve models may be used to analyze longitudinal or temporal data where the outcome measure is assessed on multiple occasions, and we examine its change over time, e.g., the trajectory over time can be modeled as a linear or quadratic function. Random effects are used to capture individual differences by conveniently representing (continuous) latent variables, aka growth factors. To fit a linear growth model we may specify a model with two latent variables: a random intercept, and a random slope:

#load data   05_PPMI_top_UPDRS_Integrated_LongFormat.csv ( dim(myData) 661  71), wide 
# setwd("/dir/")
myData <- read.csv("https://umich.instructure.com/files/330395/download?download_frd=1&verifier=v6jBvV4x94ka3EYcGKuXXg5BZNaOLBVp0xkJih0H",header=TRUE)
attach(myData)
# dichotomize the "ResearchGroup" variable
table(myData$\$$ResearchGroup)
 myData$\$$ResearchGroup <- ifelse(myData$\$$ResearchGroup == "Control", 1, 0)

 # linear growth model with 4 timepoints
 # intercept (i) and slope (s) with fixed coefficients
 # i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4 (intercept/constant)
 # s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4  (slope/linear term)
 # ??? =~ 0*t1 + 1*t2 + 2*t3 + 3*t4  (quadratic term)

In this model, we have fixed all the coefficients of the linear growth functions:

 model4 <-
 ' 
 i =~ 1*UPDRS_Part_I_Summary_Score_Baseline + 1*UPDRS_Part_I_Summary_Score_Month_03 + 
 1*UPDRS_Part_I_Summary_Score_Month_06 + 1*UPDRS_Part_I_Summary_Score_Month_09 + 
 1*UPDRS_Part_I_Summary_Score_Month_12 + 1*UPDRS_Part_I_Summary_Score_Month_18 + 
 1*UPDRS_Part_I_Summary_Score_Month_24 + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_03 + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_06 + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_09 + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_12 + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_18 +
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_24 + 
 1*UPDRS_Part_III_Summary_Score_Baseline + 1*UPDRS_Part_III_Summary_Score_Month_03 + 
 1*UPDRS_Part_III_Summary_Score_Month_06 + 1*UPDRS_Part_III_Summary_Score_Month_09 + 
 1*UPDRS_Part_III_Summary_Score_Month_12 + 1*UPDRS_Part_III_Summary_Score_Month_18 + 
 1*UPDRS_Part_III_Summary_Score_Month_24 + 
 1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Baseline + 
 1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_06 + 
 1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_12 + 
 1*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_24 + 
 1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Baseline + 
 1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_06 +
 1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_12 + 
 1*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_24 
 s =~ 0*UPDRS_Part_I_Summary_Score_Baseline + 1*UPDRS_Part_I_Summary_Score_Month_03 + 
 2*UPDRS_Part_I_Summary_Score_Month_06 + 3*UPDRS_Part_I_Summary_Score_Month_09 + 
 4*UPDRS_Part_I_Summary_Score_Month_12 + 5*UPDRS_Part_I_Summary_Score_Month_18 + 
 6*UPDRS_Part_I_Summary_Score_Month_24 +
 0*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline + 
 1*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_03 + 
 2*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_06 + 
 3*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_09 + 
 4*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_12 + 
 5*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_18 +         
 6*UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Month_24 + 
 0*UPDRS_Part_III_Summary_Score_Baseline + 1*UPDRS_Part_III_Summary_Score_Month_03 + 
 2*UPDRS_Part_III_Summary_Score_Month_06 + 3*UPDRS_Part_III_Summary_Score_Month_09 + 
 4*UPDRS_Part_III_Summary_Score_Month_12 + 5*UPDRS_Part_III_Summary_Score_Month_18 + 
 6*UPDRS_Part_III_Summary_Score_Month_24 + 
 0*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Baseline + 
 2*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_06 + 
 4*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_12 +
 6*X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Month_24 +
 0*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Baseline + 
 2*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_06 + 
 4*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_12 + 
 6*X_Assessment_Non.Motor_Geriatric_Depression_Scale_GDS_Short_Summary_Score_Month_24
 '

 fit4 <- growth(model4, data=myData)
 summary(fit4)
 parameterEstimates(fit4)	# extracts the values of the estimated parameters, the standard errors, 
 # the z-values, the standardized parameter values, and returns a data frame	
 fitted(fit4)	# return the model-implied (fitted) covariance matrix (and mean vector) of a fitted model


 # resid() function return (unstandardized) residuals of a fitted model including the difference between 
 # the observed and implied covariance matrix and mean vector
 resid(fit4)

=='"`UNIQ--h-1--QINU`"'Measures of model quality (Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA))==

 # report the fit measures as a signature vector: Comparative Fit Index (CFI), Root Mean Square Error of 
 # Approximation (RMSEA)
 fitMeasures(fit4, c("cfi", "rmsea", "srmr"))

<b>Comparative Fit Index</b> (CFI) is an incremental measure directly based on the non-centrality measure.  If d = χ2(df) where df are the degrees of freedom of the model, the Comparative Fit Index is:

<mark> FIX THIS!!!!!!!!!!!!!!!!(d(Null Model) - d(Proposed Model))/(d(Null Model)).</mark>

0≤CFI≤1 (by definition). It is interpreted as:

*CFI<0.9  - model fitting is poor. 

*0.9≤CFI≤0.95  is considered marginal, 

*CFI>0.95   is good.  

CFI is a relative index of model fit – it compare the fit of your model to the fit of (the worst) fitting null model.

<b>Root Mean Square Error of Approximation</b> (RMSEA) - “Ramsey”

An absolute measure of fit based on the non-centrality parameter: <mark>FIX EQUATION!!!!>√((χ2 - df)/(df×(N - 1)))  ,</mark>

where N the sample size and df the degrees of freedom of the model.  If χ<sup>2</sup>  < df, then the RMSEA∶=0.  It has a penalty for complexity via the chi square to df ratio.  The RMSEA is a popular measure of model fit. 

*RMSEA < 0.01, excellent, 

*RMSEA  < 0.05, good 

*RMSEA > 0.10 cutoff for poor fitting models

<b>Standardized Root Mean Square Residual</b> (SRMR) is an absolute measure of fit defined as the standardized difference between the observed correlation and the predicted correlation.  A value of zero indicates perfect fit.  The SRMR has no penalty for model complexity.  SRMR <0.08 is considered a good fit.

 # inspect the model results (report parameter table)
 inspect(fit4)

 #install.packages("semTools")
 # library("semTools")

<b><u>A Simpler Model (fit5)</u></b>

 model5 <- '
  # intercept and slope with fixed coefficients
 i =~ UPDRS_Part_I_Summary_Score_Baseline + UPDRS_Part_I_Summary_Score_Month_03 + UPDRS_Part_I_Summary_Score_Month_24
 s =~ 0*UPDRS_Part_I_Summary_Score_Baseline + 1*UPDRS_Part_I_Summary_Score_Month_03 + 6*UPDRS_Part_I_Summary_Score_Month_24
  # regressions
 i ~  R_fusiform_gyrus_Volume + Weight + ResearchGroup + Age + chr12_rs34637584_GT                                                              
 s ~ R_fusiform_gyrus_Volume + Weight + ResearchGroup + Age + chr12_rs34637584_GT
  # time-varying covariates
    UPDRS_Part_I_Summary_Score_Baseline ~ Weight
    UPDRS_Part_I_Summary_Score_Month_03  ~ ResearchGroup 
     UPDRS_Part_I_Summary_Score_Month_24 ~ Age
 '

 fit5 <- growth(model5, data=myData)
 summary(fit5); fitMeasures(fit5, c("cfi", "rmsea", "srmr"))
 parameterEstimates(fit5)	# extracts the values of the estimated parameters, the standard errors, 
 # the z-values, the standardized parameter values, and returns a data frame

 lavaan (0.5-18) converged normally after  99 iterations
  Number of observations                           661
  Estimator                                         ML
  Minimum Function Test Statistic                3.703
  Degrees of freedom                                 1
  P-value (Chi-square)                           0.054
 Parameter estimates:
  Information                                 Expected
  Standard Errors                             Standard
                   Estimate  Std.err  Z-value  P(>|z|)
 Latent variables:
  i =~
    UPDRS_P_I_S_S     1.000
    UPDRS_P_I_S_S     1.074
    UPDRS_P_I_S_S     1.172
  s =~
    UPDRS_P_I_S_S     0.000
    UPDRS_P_I_S_S     1.000
    UPDRS_P_I_S_S     6.000

 Regressions:
  i ~
    R_fsfrm_gyr_V     0.000
    Weight            0.003
    ResearchGroup    -0.880
    Age              -0.009
    c12_34637584_    -0.907
  s ~
    R_fsfrm_gyr_V    -0.000
    Weight           -0.000
    ResearchGroup    -0.084
    Age               0.002
    c12_34637584_    -0.047
  UPDRS_Part_I_Summary_Score_Baseline ~
    Weight           -0.000
  UPDRS_Part_I_Summary_Score_Month_03 ~
    ResearchGroup     0.693
  UPDRS_Part_I_Summary_Score_Month_24 ~
    Age              -0.002

 Covariances:
  i ~~
    s                 0.074

 Intercepts:
    UPDRS_P_I_S_S     0.000
    UPDRS_P_I_S_S     0.000
    UPDRS_P_I_S_S     0.000
    i                 1.633
    s                -0.023

 Variances:
    UPDRS_P_I_S_S     1.017
    UPDRS_P_I_S_S     1.093
    UPDRS_P_I_S_S     2.993
    i                 1.019
    s                -0.025

  <b>cfi rmsea  srmr</b>
 <b>0.996 0.064 0.008</b>

 fitted(fit5)	# return the model-implied (fitted) covariance matrix (and mean vector) of a fitted model
 # write.table(fitted(fit5), file="C:\\Users\\Dinov\\Desktop\\test1.txt")

 # resid() function return (unstandardized) residuals of a fitted model including the difference between 
 # the observed and implied covariance matrix and mean vector
 resid(fit5)

 # report the fit measures as a signature vector
 fitMeasures(fit5, c("cfi", "rmsea", "srmr"))   # comparative fit index (CFI)

 # inspect the model results (report parameter table)
 inspect(fit5)

<b>Note:</b> See discussion of SEM modeling pros/cons.

==='"`UNIQ--h-2--QINU`"'Generalized Estimating Equation (GEE) Modeling===

Generalized Estimating Equations (GEE) modeling   is used for analyzing data with the following characteristics:
(1) the observations within a group may be correlated, (2) observations in separate clusters are independent, (3) a monotone transformation of the expectation is linearly related to the explanatory variables, and (4) the variance is a function of the expectation. The expectation (#3) and the variance (# 4) are conditional given group-level or individual-level covariates.

GEE is applied to handle correlated discrete and continuous outcome variables. For the outcome variables, it only requires specification   of the first 2 moments and   correlation   among   them.    The   goal   is   to estimate fixed parameters    without    specifying    their    joint    distribution.  The correlation is specified by one of these 4 alternatives (which is specified in the R call: geeglm(outcome ~ center + treat + sex + baseline + age, data = respiratory, family = "binomial", id = id, <b>corstr = " exchangeable"</b>, scale.fix = TRUE):

[[Image:SMHS_BigDataBigSci8.png|300px]]

==='"`UNIQ--h-3--QINU`"'Respiratory Illness GEE R example===

This example is based on a data set on respiratory illness and the <b>geepack</b> package. The data is from a clinical study of the treatment effects on patients with respiratory illness. N=111 patients from 2 clinical centers randomized to receive either placebo or active treatments. 4 temporal examinations assessed the <b>respiratory state</b> of patients as good (=1) or poor (=0). Explanatory variables characterizing a patient were: <b>center</b> (1,2), treatment (A=active, P=placebo), <b>sex</b> (M=male, F=female), <b>age</b> (in years) at baseline. The values of the covariates were constant for the repeated elementary observations on each patient.

<b>Table 1</b> shows the number of patients for the response patterns across the 4 visits split by baseline-status and treatment. Baseline respiratory status = 0 appear to have either low or high number of positive responses. Baseline respiratory status = 1 tend to respond positively. <b>Table 2</b> describes the distribution of the number of positive responses per patient for sex and center.

 # library("geepack")

<b>Table 1</b>: Distribution of patients for <b>different response patterns</b> classified by <b>baseline-respiratory</b> response and <b>treatment</b>. The patterns are ordered according to increasing numbers of positive responses.

<mark>!!!!!Insert tables here</mark>

<b>Table 2</b>: Distribution of patients for the number of positive responses across the 4 visits for <b>Sex</b> and <b>Center</b>. 

<b>Figure 1</b> shows a plot of age against the proportion of positive responses for each patient. It indicates a quadratic relationship between the proportions and the age. Fitting a logistic model to the data (which would be appropriate if there were <i>no time effects</i> and <i>no spread in the response probabilities</i> for patients with the same covariate values).

 # install.packages("geepack")
 library("geepack")

 # data include a clinical trial of 111 patients with respiratory illness from two different clinics were randomized to receive either 
 # placebo (P) or an active (A) treatment. Patients were examined at baseline and at four visits during treatment. 
 # At each examination, respiratory status (categorized as 1 = good, 0 = poor)
 data("respiratory")
 head(respiratory)
 myData <- respiratory

<center>head(myData)
{| class="wikitable" style="text-align:center; " border="1"
|-
|||Center||ID||Treat||Sex||Age||Baseline||Visit||Outcome
|-
|1 ||1||1||P||M||46||0||1||0
|-
|2 ||1||1||P||M||46||0||2||0
|-
|3 ||1||1||P||M||46||0||3||0
|-
|4 ||1||1||P||M||46||0||4||0
|-
|5||1||2||P||M||28||0||1||0
|-
|6||1||2||P||M||28||0||2||0
|}
</center>

 # Get proportions of positive responses
 responses <- factor(myData$\$$outcome, labels = c("OutcomePositive", "OutcomeNegative"))
data.frame <- data.frame(responses, myData$\$$age)
 head(data.frame)
 tab <- prop.table(table(data.frame), 1); tab	# compute proportions
 sum(tab[1,])				# check proportions (sums to 1.0)?
 prop <- tab[1,]				# save the proportions of positive responses for each patient
 plot(as.numeric(dimnames(tab)$myData.age), tab[1,], xlab = "Age", ylab = "Proportion of Positive Outcomes")
 # dimnames(tab)				# to see/inspect positive/negative outcomes …

[[Image:SMHS_BigDataBigSci9.png|500px]]

 x <- as.numeric(dimnames(tab)$\$$myData.age)
poly <- loess( prop ~ x)	# fit a Local Polynomial Regression Fitting
plot(x, prop)
lines(predict(poly), col='red', lwd=2)
smoothingSpline <- smooth.spline(x, prop, spar=0.6)
plot(x, prop)
lines(smoothingSpline, col='red', lwd=1.5)
smoothPolySpline <- smooth.spline(x, predict(poly), spar=0.6)
lines(smoothPolySpline, col='blue', lwd=2)
legend("topright", inset=.05, title="Polynomial regression models",  c("Raw Poly","Smooth Poly"), fill=c('red', 'blue'), horiz=TRUE)

SMHS BigDataBigSci10.png

model.glm <- glm(outcome ~ baseline + center + sex + treat + age + I(age^2), data = respiratory, family = binomial)
summary(model.glm)












See also




Translate this page:

(default)
Uk flag.gif

Deutsch
De flag.gif

Español
Es flag.gif

Français
Fr flag.gif

Italiano
It flag.gif

Português
Pt flag.gif

日本語
Jp flag.gif

България
Bg flag.gif

الامارات العربية المتحدة
Ae flag.gif

Suomi
Fi flag.gif

इस भाषा में
In flag.gif

Norge
No flag.png

한국어
Kr flag.gif

中文
Cn flag.gif

繁体中文
Cn flag.gif

Русский
Ru flag.gif

Nederlands
Nl flag.gif

Ελληνικά
Gr flag.gif

Hrvatska
Hr flag.gif

Česká republika
Cz flag.gif

Danmark
Dk flag.gif

Polska
Pl flag.png

România
Ro flag.png

Sverige
Se flag.gif