SMHS LinearModeling MachineLearning

From SOCR
Revision as of 07:49, 19 May 2016 by Pineaumi (talk | contribs) (Example 1: Simulation (subject, day, treatment, observation))
Jump to: navigation, search

SMHS Linear Modeling - Machine Learning Algorithms

Scientific inference based on fixed and random effect models, assumptions, and mixed effects logistic regression.

Questions:

  • How can we tie human intuition and computer-generated results to obtain reliable, effective, and efficient decision-support system (that facilitates, forecasting)?
  • Niels Born – “It is difficult to make predictions, especially about the future”
  • Can we unsupervisely classify the data?
  • Prediction

    For most of the machine learning algorithms (including first-order linear regression), we:

  • first generate the model using training data, and then
  • predict values for test/new data.
  • Predictions are made using the R predict function. (type ?predict.name), where name is the function-name corresponding to the algorithm. The first argument of predict often represents the variable storing the model, and the second argument is a matrix or data frame of test data that the model needs to be applied to. Calling predict can be done in 2 ways: type predict or type of predict.name.

    Example:

    #mydata <- read.table('https://umich.instructure.com/files/330381/download?download_frd=1&verifier=HpfmjfMFaMsk7rIpfPx0tmz960oTW7JA8ZonGvVC',as.is=T, header=T)  # 01a_data.txt
    # mydata <- read.table('data.txt',as.is=T, header=T)
    
    # (1) First, there are different approaches to split the data (partition the data) into 
    # training and testing sets.
    ## TRAINING: 75% of the sample size
    sample_size <- floor(0.75 * nrow(mydata))
    ## set the seed to make your partition reproductible
    set.seed(1234)
    train_ind <- sample(seq_len(nrow(mydata)), size = sample_size)
    train <- mydata[train_ind, ]
    
    # TESTING DATA
    test <- mydata[-train_ind, ]
    
    lin.mod <- lm(Weight ~ Height*Team, data=train)
    predicted.values <-  predict(lin.mod, newdata=test
    

    Data Modeling/Training

    Logistic Regression:

    glm_model <-glm(ifelse(Weight > 200,1,0) ~ Height*Team, family=binomial(link="logit"), data=train)
    

    K-Means Clustering

    train.1 <- cbind(train$\$$Height, train$\$$Weight, train$\$$Age)
     test.1 <- cbind(test$\$$Height, test$\$$Weight, test$\$$Age)
    Weight.1 <- ifelse(train$\$$Weight > 200,1,0)
    
     head(train.1)
     kmeans_model <- kmeans(<u><b>train.1</b></u>, 3)
     plot(train.1, col = kmeans_model$\$$cluster)
    points(kmeans_model$\$$centers, col = 1:2, pch = 8, cex = 2)
    
    <b>K-Nearest Neighbor Classification</b>
     # install.packages("class")
     library("class")
     knn_model  <-  knn(train=train.1,  test=test.1,  cl=as.factor(Weight.1),  k=5)
     plot(knn_model)
     summary(knn_model)
    
    <b>Naïve Bayes Classifier</b>
     install.packages("e1071")
     library("e1071")
     nbc_model <-  naiveBayes(Weight ~ Height*Age,  data=train.1)
    
    <b>Decision Trees (CART)</b>
     #install.packages("e1071")
     library("rpart")
     cart_model <- rpart(Weight ~ Height+Age, data= as.data.frame(train.1), method="class")
     plot(cart_model)
     text(cart_model) 
    
    <b>AdaBoost</b>
     install.packages("ada")
     # X be the matrix of features, and labels be a vector of 0-1 class labels.
     library("ada")
     boost_model <- ada(x= cbind(train$\$$Height, train$\$$Weight, train$\$$Age), y= Weight.1)
    plot(boost_model)
    boost_model
    

    Support Vector Machines (SVM)

    #install.packages("e1071")
    library("rpart")
    svm_model <- svm(x= cbind(train$\$$Height, train$\$$Weight, train$\$$Age), y=as.factor(Weight.1), 
     kernel ="radial")
     summary(svm_model)
    
    =='"`UNIQ--h-1--QINU`"'Appendix==
    
    ==='"`UNIQ--h-2--QINU`"'Example 1: Simulation (subject, day, treatment, observation)===
    
    <i>Obs ~ Treatment + Day + Subject(Treatment)+ Day*Subject(Treatment)+ ε.</i>
    
    This model is accounts for:<br>
    Response = Obs
    
    Fixed effects:<br>
    Treatment (fixed)<br>
    Day (fixed)<br>
    Treatment*Day interaction
    
    Random Effects:<br>
    Subject nested within Treatment (random)<br>
    Day crossed with "Subject within Treatment" (random)
    
     mydata <- data.frame(
     Subject  = c(13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 
     34, 35, 36, 37, 38, 39, 40, 62, 63, 64, 65, 13, 14, 15, 16, 17, 18, 
     19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 
     40, 62, 63, 64, 65, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 
     29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 62, 63, 64, 65), 
     Day       = c(rep(c("Day1", "Day3", "Day6"), each=28)), 
     Treatment = c(rep(c("B", "A", "C", "B", "C", "A", "A", "B", "A", "C", "B", "C", 
     "A", "A", "B", "A", "C", "B", "C", "A", "A"), each = 4)), 
     Obs       = c(6.472687, 7.017110, 6.200715, 6.613928, 6.829968, 7.387583, 7.367293, 
     8.018853, 7.527408, 6.746739, 7.296910, 6.983360, 6.816621, 6.571689, 
     5.911261, 6.954988, 7.624122, 7.669865, 7.676225, 7.263593, 7.704737, 
     7.328716, 7.295610, 5.964180, 6.880814, 6.926342, 6.926342, 7.562293, 
     6.677607, 7.023526, 6.441864, 7.020875, 7.478931, 7.495336, 7.427709, 
     7.633020, 7.382091, 7.359731, 7.285889, 7.496863, 6.632403, 6.171196, 
     6.306012, 7.253833, 7.594852, 6.915225, 7.220147, 7.298227, 7.573612, 
     7.366550, 7.560513, 7.289078, 7.287802, 7.155336, 7.394452, 7.465383, 
     6.976048, 7.222966, 6.584153, 7.013223, 7.569905, 7.459185, 7.504068, 
     7.801867, 7.598728, 7.475841, 7.511873, 7.518384, 6.618589, 5.854754, 
     6.125749, 6.962720, 7.540600, 7.379861, 7.344189, 7.362815, 7.805802, 
     7.764172, 7.789844, 7.616437, NA, NA, NA, NA))
    
     install.packages("lme4")
     library("lme4", lib.loc="~/R/win-library/3.1")
     m1 <- lmer(Obs ~ Treatment * Day + (1 | Subject), mydata)
     m1
    
    Linear mixed model fit by REML ['lmerMod']
    
    Formula: Obs ~ Treatment * Day + (1 | Subject)
    
    Data: mydata
    
    REML criterion at convergence: 56.8669
    
    <center> Random Effects
    {| class="wikitable" style="text-align:center; width:35%" border="1"
    |-
    |Groups||Name||Std. Dev.
    |-
    |Subject||(Intercept)||0.2163
    |-
    |Residual|| ||0.2602
    
    |}
    Number of obs: 80, groups:  Subject, 28 </center>
    
    
    
    
    
    <center> Fixed Effects
    {| class="wikitable" style="text-align:center; width:35%" border="1"
    |-
    |(Intercept)||TreatmentB||TreatmentC
    |-
    |7.1827||-0.6129||0.1658
    |-
    |DayDay3||DayDay6 ||TreatmentB: DayDay3
    |-
    |0.2446||0.4507||-0.1235
    |-
    |TreatmentC: DayDay3||TreatmentB: DayDay6||TreatmentC: DayDay6
    |-
    |-0.2740||-0.3508||-0.3327
    
    |}
    </center>
    
    
    
    
    
    <center>
    {| class="wikitable" style="text-align:center; width:35%" border="1"
    |-
    |Index||Subject||Day||Treatment||Obs
    |-
    |1||13||Day1||B||6.472687
    |-
    |2||14||Day1||B||7.01711
    |-
    |3||15||Day1||B||6.200715
    |-
    |4||16||Day1||B||6.613928
    |-
    |5||17||Day1||A||6.829968
    |-
    |6||18||Day1||A||7.387583
    |-
    |7||19||Day1||A||7.367293
    |-
    |8||20||Day1||A||8.018853
    |-
    |9||21||Day1||C||7.527408
    |-
    |10||22||Day1||C||6.746739
    |-
    |11||23||Day1||C||7.29691
    |-
    |12||24||Day1||C||6.98336
    |-
    |13||29||Day1||B||6.816621
    |-
    |14||30||Day1||B||6.571689
    |-
    |15||31||Day1||B||5.911261
    |-
    |16||32||Day1||B||6.954988
    |-
    |17||33||Day1||C||7.624122
    |-
    |18||34||Day1||C||7.669865
    |-
    |19||35||Day1||C||7.676225
    |-
    |20||36||Day1||C||7.263593
    |-
    |21||37||Day1||A||7.704737
    |-
    |22||38||Day1||A||7.328716
    |-
    |23||39||Day1||A||7.29561
    |-
    |24||40||Day1||A||5.96418
    |-
    |25||62||Day1||A||6.880814
    |-
    |26||63||Day1||A||6.926342
    |-
    |27||64||Day1||A||6.926342
    |-
    |28||65||Day1||A||7.562293
    |-
    |29||13||Day3||B||6.677607
    |-
    |30||14||Day3||B||7.023526
    |-
    |31||15||Day3||B||6.441864
    |-
    |32||16||Day3||B||7.020875
    |-
    |33||17||Day3||A||7.478931
    |-
    |34||18||Day3||A||7.495336
    |-
    |35||19||Day3||A||7.427709
    |-
    |36||20||Day3||A||7.63302
    |-
    |37||21||Day3||C||7.382091
    |-
    |38||22||Day3||C||7.359731
    |-
    |39||23||Day3||C||7.285889
    |-
    |40||24||Day3||C||7.496863
    |-
    |41||29||Day3||B||6.632403
    |-
    |42||30||Day3||B||6.171196
    |-
    |43||31||Day3||B||6.306012
    |-
    |44||32||Day3||B||7.253833
    |-
    |45||33||Day3||C||7.594852
    |-
    |46||34||Day3||C||6.915225
    |-
    |47||35||Day3||C||7.220147
    |-
    |48||36||Day3||C||7.298227
    |-
    |49||37||Day3||A||7.573612
    |-
    |50||38||Day3||A||7.36655
    |-
    |51||39||Day3||A||7.560513
    |-
    |52||40||Day3||A||7.289078
    |-
    |53||62||Day3||A||7.287802
    |-
    |54||63||Day3||A||7.155336
    |-
    |55||64||Day3||A||7.394452
    |-
    |56||65||Day3||A||7.465383
    |-
    |57||13||Day6||B||6.976048
    |-
    |58||14||Day6||B||7.222966
    |-
    |59||15||Day6||B||6.584153
    |-
    |60||16||Day6||B||7.013223
    |-
    |61||17||Day6||A||7.569905
    |-
    |62||18||Day6||A||7.459185
    |-
    |63||19||Day6||A||7.504068
    |-
    |64||20||Day6||A||7.801867
    |-
    |65||21||Day6||C||7.598728
    |-
    |66||22||Day6||C||7.475841
    |-
    |67||23||Day6||C||7.511873
    |-
    |68||24||Day6||C||7.518384
    |-
    |69||29||Day6||B||6.618589
    |-
    |70||30||Day6||B||5.854754
    |-
    |71||31||Day6||B||6.125749
    |-
    |72||32||Day6||B||6.96272
    |-
    |73||33||Day6||C||7.5406
    |-
    |74||34||Day6||C||7.379861
    |-
    |75||35||Day6||C||7.344189
    |-
    |76||36||Day6||C||7.362815
    |-
    |77||37||Day6||A||7.805802
    |-
    |78||38||Day6||A||7.764172
    |-
    |79||39||Day6||A||7.789844
    |-
    |80||40||Day6||A||7.616437
    |-
    |81||62||Day6||A||NA
    |-
    |82||63||Day6||A||NA
    |-
    |83||64||Day6||A||NA
    |-
    |84||65||Day6||A||NA
    
    |}
    </center>
    
    ==='"`UNIQ--h-3--QINU`"'Example 2: Genotype-phenotype===
    
    Save this data file as a tab-separated TXT file:
    
    <center>
    {| class="wikitable" style="text-align:center; width:35%" border="1"
    |-
    |Genotype||Race||Subject||Weight
    |-
    |A||1||1||8
    |-
    |A||1||2||9
    |-
    |A||1||3||11
    |-
    |A||1||4||12
    |-
    |A||1||5||10
    |-
    |A||2||1||17
    |-
    |A||2||2||17
    |-
    |A||2||3||16
    |-
    |A||2||4||15
    |-
    |A||2||5||19
    |-
    |A||2||6||18
    |-
    |A||2||7||18
    |-
    |A||2||8||18
    |-
    |A||2||9||24
    |-
    |A||3||1||12
    |-
    |A||3||2||12
    |-
    |A||3||3||16
    |-
    |A||3||4||15
    |-
    |A||3||5||15
    |-
    |A||3||6||14
    |-
    |A||4||1||17
    |-
    |A||4||2||20
    |-
    |A||4||3||20
    |-
    |A||4||4||19
    |-
    |A||4||5||19
    |-
    |A||4||6||18
    |-
    |A||4||7||20
    |-
    |A||4||8||19
    |-
    |A||4||9||19
    |-
    |B||5||1||9
    |-
    |B||5||2||12
    |-
    |B||5||3||13
    |-
    |B||5||4||16
    |-
    |B||5||5||14
    |-
    |B||5||6||14
    |-
    |B||6||1||10
    |-
    |B||6||2||10
    |-
    |B||6||3||9
    |-
    |B||6||4||8
    |-
    |B||6||5||13
    |-
    |B||6||6||9
    |-
    |B||6||7||11
    |-
    |B||7||1||12
    |-
    |B||7||2||16
    |-
    |B||7||3||17
    |-
    |B||7||4||15
    |-
    |B||7||5||15
    |-
    |B||7||6||15
    |-
    |B||8||1||9
    |-
    |B||8||2||6
    |-
    |B||8||3||8
    |-
    |B||8||4||8
    |-
    |B||8||5||13
    |-
    |B||8||6||9
    |-
    |B||8||7||9
    |-
    |B||8||8||10
    
    |}
    </center>
    
     # data <- read.table('C:\\Users\\Dinov\\Desktop\\data.txt',as.is=T, header=T)
     data <- read.table('data.txt',as.is=T, header=T)
     names(data)
     attach(data)
     table(Genotype, Race)
     table(Race, Subject)
    
     # for demonstration, construct a balanced data set 
     #  5 subjects for each race 
     data_balance <- data[data$\$$Subject <=5,]
    
    # create factors 
    data_balance$\$$g <- as.factor(data_balance$\$$Genotype)
    data_balance$\$$t <- as.factor(data_balance$\$$Race)
    data_balance$\$$s <- as.factor(data_balance$\$$Subject)
    
    # fit the ANOVA 
    anova.model <- lm(Weight ~ g+t, data= data_balance)
    # get the ANOVA table
    anova(anova.model) 
    
    # note that all F tests use MSE, subjects within race as denominator
    # will need to hand-calculate test for genotypes
    
    # Random effects modeling estimation using REML
    library(lme4)
    
    lme.model <- lmer(Weight~g+(1|t),data= data_balance)
    summary(lme.model)
    anova(lme.model)
    
    # various extractor functions:
    fixef(lme.model)    	# estimates of fixed effects
    vcov(lme.model)     	# VC matrix for the fixed effects
    VarCorr(lme.model)  	# estimated variance(-covariance) for random effects
    ranef(lme.model)    	# predictions of random effects
    coef(lme.model)     	# fixed effects + pred's of random effects
    fitted(lme.model)   	# conditional means for each obs (X bhat + Z uhat)
    resid(lme.model)    	# conditional residuals (Y - fitted)
    
    # REML is the default method for estimating variance components.
    # If want to use ML, can specify that
    lmer(Weight~g+(1|t),REML=F, data= data_balance)
    
    # Now, to get p-values for the effects, or construct a ci
    #  inference on Subject weight focus is the difference between the two genotypes
    #  which is Cb for C = [0, 1] using the default R parameterization
    # following assumes lme4 library loaded, data frame is d
    #  uses full data set (unbalanced)
    # also assumes g and t are factors identifying genotypes and trays
    
    # fit the model
    data$\$$g <- as.factor(data$\$$Genotype)
    data$\$$t <- as.factor(data$\$$Race)
    data$\$$s <- as.factor(data$\$$Subject)
    
    # See R DATA TYPES: http://www.statmethods.net/input/datatypes.html
    
    model.lmer <- lmer(Weight ~ g + (1|t), data= data)
    # get a confidence interval for g
    # slower, obvious programing
    nsim <- 10
    gdiff <- rep(NA, nsim)
    for (i in 1:nsim) {
    data$\$$y <- simulate(model.lmer)    # param bootstrap data set
     model.lmer.1 <- lmer(unlist(data$\$$y) ~ g + (1|t), data= data)
      # we need to turn the list of simulated values (y) into an atomic vector with unlist()
      # both data frames and models objects (e.g.,  produced by lm()) are lists
      #  http://adv-r.had.co.nz/Data-structures.html 
    gdiff[i] <- fixef(model.lmer.1)[2]   # keep only the est diff
    }
    quantile(gdiff, c(0.025, 0.975)) 
      # print 95% CI of the coefficient/effect-size of genotype(g)
    
    # print model summary
    summary(model.lmer)
    
    # two ways to speed up CI construction and increase simulations to 1K
    # use apply to avoid the for loop
    # use refit() to avoid the setup time before fitting the LME
    
    yall <- simulate(model.lmer, nsim=1000)
    gdiff <- apply(yall, 2, function(y) {fixef(refit(model.lmer, y))[2]})
    quantile(gdiff, c(0.025, 0.975))
    
    # To get both the estimate and the SE
    #  which are in the fixed effect table returned by summary()
    #  use the extractor functions fixef() and vcov()
    
    yall <- simulate(model.lmer, nsim=1000)
    gdt <- apply(yall, 2, function(y) { 
    model.lmer.2 <- refit(model.lmer, y); 
    c(fixef(model.lmer.2)[2], sqrt(vcov(model.lmer.2)[2,2]) ) 
    })
    gdt <- t(gdt)    # because result of apply is 2 rows, nsim cols
    
    # Using gdt, we can obtain a parametric bootstrap-t interval
    
    # Hypothesis testing: here we need to simulate under H0: g = 0
    # To find the t statistic and the F statistic
    #  t statistic is in the @coefs table
    #  F statistic is a value in the anova() output
    #    if more than one test, need to subscript (unless you want all F's)
    #    need to reference as a list to avoid R issues
    
    # Complete model with genotypes
    model.lmer <- lmer(Weight ~ g + (1|t), data= data)
    
    model.lmer.0 <- lmer(Weight ~ (1|t), data=data)
    yall <- simulate(model.lmer.0, nsim=1000)
    #  NB: simulate data under model.lmer.0
    gdt0 <- apply(yall, 2, function(y) {
    model.lmer.2 <- refit(model.lmer, y); # but analyze under alt. model (model.lmer)
    c(summary(model.lmer.2), anova(model.lmer.2)$\$$'F value' )
     })
     gdt0 <- t(gdt0)
    
     # obs t = 1.438179, p-value using t statistic:
     coef(summary(model.lmer))
     mean(abs(gdt0[,1]$\$$sim_1$\$$residuals) >= 1.438179)
     # p-value = 0.125
    
     # obs F = 2.0684
     anova(model.lmer)
       mean(gdt0[,2]$\$$sim_2$\$$residuals >= 2.0684)
    # p-value = 0.01785714
    

    Baseball data

    http://wiki.socr.umich.edu/index.php/SOCR_Data_MLB_HeightsWeights

    data <- read.table('E:\\Ivo.dir\\Research\\UMichigan\\Education_Teaching_Curricula\\2015_2016\\HS_853_Fall_2015\\Modules_docx\\01a_data.txt',as.is=T, header=T)
    boxplot(Weight ~ Position, data = data, xlab = "Position", ylab = "Weight",
    main = "MLB Weight Distribution by Position")
    boxplot(Weight ~ Team, data = data, xlab = "Team", ylab = "Weight",
    main = "MLB Team Weight Distributions")
    

    References

    Bates, D.M., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0.

    Baayen, R.H. (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics Using R. Cambridge: Cambridge University Press.

    Baayen, R.H., Davidson, D.J., Bates, D.M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412.

    Barr, D.J., Levy, R., Scheepers, C., & Tilly, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.

    Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127-135.

    Wike, E.L., & Church, J.D. (1976). Comments on Clark’s “The language-as-fixed-effect fallacy”. Journal of Verbal Learning & Verbal Behavior, 15, 249-255.

    Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. [1]


    ....





    Translate this page:

    (default)
    Uk flag.gif

    Deutsch
    De flag.gif

    Español
    Es flag.gif

    Français
    Fr flag.gif

    Italiano
    It flag.gif

    Português
    Pt flag.gif

    日本語
    Jp flag.gif

    България
    Bg flag.gif

    الامارات العربية المتحدة
    Ae flag.gif

    Suomi
    Fi flag.gif

    इस भाषा में
    In flag.gif

    Norge
    No flag.png

    한국어
    Kr flag.gif

    中文
    Cn flag.gif

    繁体中文
    Cn flag.gif

    Русский
    Ru flag.gif

    Nederlands
    Nl flag.gif

    Ελληνικά
    Gr flag.gif

    Hrvatska
    Hr flag.gif

    Česká republika
    Cz flag.gif

    Danmark
    Dk flag.gif

    Polska
    Pl flag.png

    România
    Ro flag.png

    Sverige
    Se flag.gif